

RCK-862 *plus*

USB

Graphic Display

Supervisory System

Hour meter

Alarms

Progressive Algorithm

Suction Control

Discharge Control

Floating Condensation

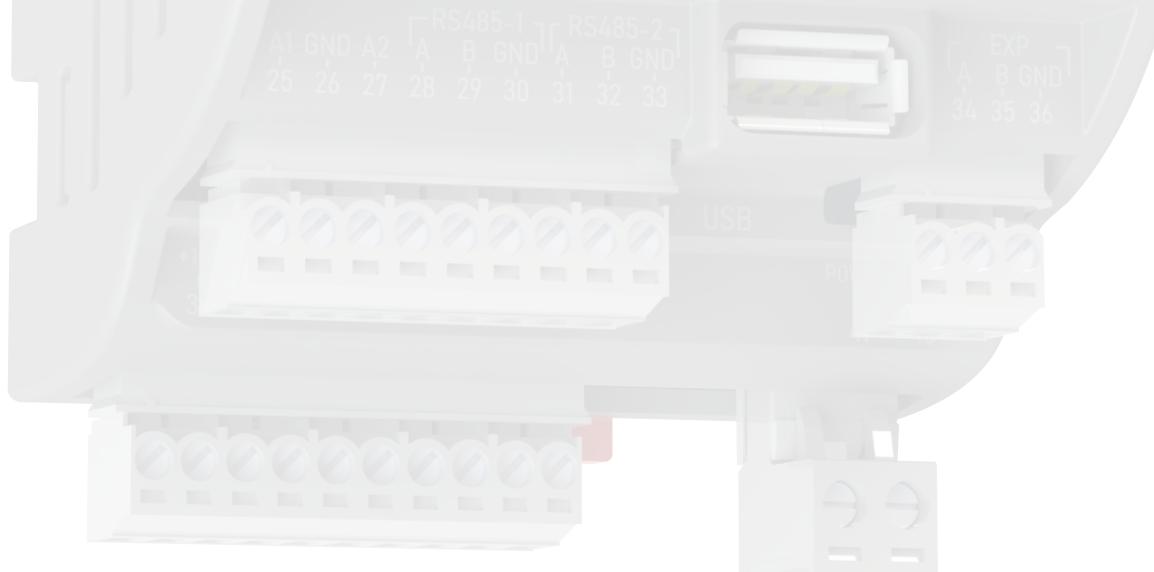
Recipe System

1. TABLE OF CONTENTS

1. TABLE OF CONTENTS.....	2
2. DESCRIPTION.....	3
3. APPLICATIONS.....	5
4. GLOSSARY.....	5
5. TECHNICAL SPECIFICATIONS.....	6
6. ELECTRICAL PRECAUTIONS.....	6
7. INSTALLING THE RCK-862 plus	7
8. DIMENSIONS.....	7
9. WIRING SCHEMATICS.....	8
10. NAVIGATION KEYS.....	9
11. NAVIGATION KEYS.....	10
12. SUMMARY SCREENS.....	11
12.1 GROUP (S) SUMMARY SCREENS.....	11
12.2 SUCTION SUMMARY SCREENS.....	12
12.3 DISCHARGE SUMMARY SCREENS.....	13
12.4 CONTINUATION OF SUMMARY SCREENS.....	14
12.5 INDIVIDUAL PRESSURE SWITCHES.....	15
12.6 INDIVIDUAL THERMOSTATS.....	16
12.7 INPUTS AND OUTPUTS.....	17
12.8 COMPRESSOR PROTECTION THERMOSTATS.....	18
12.9 ROTATION OUTPUTS.....	18
13. CONTROL MENU.....	19
14. SUCTION CONTROLS.....	20
14.1 SUCTION CONTROL.....	20
14.2 MODULATION OF ON/OFF COMPRESSORS.....	20
14.3 MODULATION OF VARIABLE CAPACITY COMPRESSORS (VCC).....	21
14.3.1 VCC-ANALOG.....	21
14.3.2 VCC-DIGITAL.....	21
14.4 CONTROL MODES.....	22
14.4.1 LINEAR MODE.....	22
14.4.1.1 LINEAR MODE LINKED ONLY WITH DIGITAL OUTPUTS-COMPRESSORS ON/OFF+UNLOADERS.....	22
14.4.1.2 LINEAR MODE LINKED WITH A VCC COMPRESSOR IN CONJUNCTION WITH ON/OFF COMPRESSORS.....	23
14.4.1.3 LINEAR MODE LINKED WITH A VCC-ANALOG COMPRESSOR.....	24
14.4.1.4 LINEAR MODE LINKED WITH A VCC-DIGITAL COMPRESSOR.....	24
14.4.2 ROTATION MODE.....	25
14.4.3 DEAD ZONE MODE.....	25
14.4.4 DEAD ZONE MODE WITH ROTATION.....	25
14.4.5 PROGRESSIVE ALGORITHM MODE.....	26
14.4.6 INTEGRAL ACTION.....	27
15. DISCHARGE CONTROLS.....	28
15.1 CONTROL MODES.....	28
15.2 TYPES OF DISCHARGE CONTROL.....	28
15.2.1 LINEAR MODE.....	28
15.2.1.1 LINEAR MODE LINKED ONLY WITH DIGITAL OUTPUTS-FANS ON/OFF.....	28
15.2.1.2 INVERTER MODULATED FAN.....	28
15.2.1.3 LINEAR MODE USING A FAN (INVERTER) IN CONJUNCTION WITH FANS LINKED WITH DIGITAL OUTPUTS.....	29
15.2.2 ROTATION.....	29
15.2.3 DEAD ZONE.....	29
15.2.4 DEAD ZONE+ROTATION.....	29
15.2.5 INTEGRAL ACTION.....	30

1. TABLE OF CONTENTS

16. AUXILIARY FUNCTIONS.....	31
16.1 PUMP DOWN.....	31
16.2 COMPRESSOR PROTECTION THERMOSTATS.....	33
16.3 ADIABATIC CONDENSATION.....	33
16.3.1 TEMPERATURE CONTROL.....	33
16.3.1.1 TEMPERATURE CONTROL USING TWO SENSORS (DIFFERENTIAL TBS-TBU).....	34
16.3.1.2 TEMPERATURE CONTROL USING A SENSOR (TBS).....	34
16.3.1.3 TEMPERATURE CONTROL USING TWO SENSORS (TBS-TBU DIFFERENTIAL AND TEMPERATURE LIMIT).....	34
16.3.2 CYCLE TIMER MODE.....	34
16.4 FLOATING CONDENSATION.....	34
16.5 INDIVIDUAL PRESSURE SWITCHES.....	35
16.6 INDIVIDUAL THERMOSTATS.....	36
16.7 ROTATION OUTPUTS.....	36
16.8 CONTROL STATUS.....	36
17. ALARMS.....	37
17.1 ALARM VIEW.....	37
17.2 AUTOMATIC RESETS.....	38
17.3 OUTPUT SIGNALING.....	38
17.4 ALARM TABLES.....	39
17.4.1 SYSTEMALARMS.....	39
17.4.2 SUCTIONALARMS.....	39
17.4.3 DISCHARGEALARM.....	40
17.4.4 INDIVIDUAL PRESSURE SWITCHESALARMS.....	42
17.4.5 INDIVIDUAL THERMOSTATALARMS.....	42
17.4.6 ROTATION OUTPUTALARMS.....	42
17.4.7 COMMUNICATIONALARMS WITH EXPANSIONS.....	42
18. MAIN MENU.....	43
18.1 FUNCTIONS SETTINGS.....	43
18.2 SYSTEM SETTINGS.....	44
18.3 COMMUNICATION SETTINGS.....	44
18.3.1 COMMUNICATION WITH SITRAD.....	45
18.3.2 MODBUS COMMUNICATION.....	45
18.4 EXPANSIONS.....	45
18.5 DATA MANAGEMENT.....	47
18.5.1 EXPORT RECIPE.....	47
18.5.2 IMPORT RECIPE.....	47
18.5.3 FIRMWARE UPDATE.....	47
18.6 RESTORE FACTORY DEFAULT.....	47
19. PARAMETER TABLE.....	48
20. IMPORTANT.....	70
21. WARRANTY TERM.....	70


The **RCK-862 plus** is an expandable electronic controller from the Rackcontrol line for application in commercial and industrial refrigeration compression plants. It can control in low and medium temperature applications with up to three suction lines and three discharge lines. In addition to control and monitoring, it has two independent RS-485 communication ports that can be used for remote control via Sitrad software or other equipment via MODBUS protocol.

The **RCK-862 plus** is capable of controlling pressure or temperature, through its 6 configurable inputs for sensors and 8 digital inputs for monitoring devices and external drives. Its robust hardware also has eight control outputs for compressors or fans, two analog outputs for proportional control and six digital outputs (three relay outputs and three solid state type) for ON-OFF control of compressors, unloader valves and fans. Its three solid state relays can be used together with dedicated logic for controlling digital compressors of variable capacity.

The **RCK-862 plus** is a control module that acts alone or together with expansion modules to increase the number of inputs and outputs in large systems.

The **RCK-862 plus** has advanced control logic to optimize thermal performance and reduce the energy consumption of the cooling system. The proportional-integral control seeks to minimize the variation in temperature/pressure of the suction line. The progressive algorithm, which seeks to match the cold demand required by the plant with the power of the set of compressors, seeking to reduce the number of compressor actuations and shutdowns. The floating condensation control logic, where the temperature of the external environment is monitored to reduce the condensation setpoint, consequently reducing the compression ratio of the system and its energy consumption.

The **RCK-862 plus** has a user-friendly interface through a high-brightness OLED display, six interaction keys and a control menu that provides the commands most used by the compression center. Simple to operate and configure, the **RCK-862 plus** is equipped with an internal buzzer (audible warning), key and screens for monitoring alarms that simplify the process of monitoring and identifying faults in the refrigeration system. There is also a real-time clock (RTC) that allows you to automate commands and record the times of alarms. The USB connection can be used to upload and download configuration parameters, as well as to update your firmware.

3. APPLICATION

- Low and medium power industrial refrigeration
- Rack type refrigeration equipment (compressors in parallel)
- Compression centers for supermarkets, logistic storage centers or air conditioning systems
- Cold storage facilities
- Condensing units
- Plug-ins

4. GLOSSARY

Group: It is a set of suction or discharge lines that have links (same refrigerator circuit).

Control line: A circuit section with the same pressure or temperature control, for example: suction or discharge.

Unloader: Capacity regulating valve on compressors.

Hysteresis: Range of variation of the control parameter, also known as Control differential.

Setpoint: Desirable value of the control parameter (pressure or temperature).

Pressure switch: Pressure control based on a setpoint and a hysteresis.

Thermostat: Temperature control based on a setpoint and a hysteresis.

Overheating: Temperature difference above a refrigerant's boiling point for a given pressure.

Subcooling: Temperature difference below the dew point of a refrigerant for a given pressure.

Compression: Pressure control where the hysteresis interval is below the setpoint

Decompression: Pressure control where the hysteresis interval is above the setpoint

SSR: Solid State Relay. Electronic device for driving electric loads that allows a higher frequency of switching than electro-mechanical relay. Used to drive alternating current (AC) charges only.

VCC: Variable Compressor Capacity Compressor. Name the compressor that allows modulation within a continuous range, usually between 10 and 100%.

VCC-Analog: Compressor whose capacity is modulated by means of an analog output from the controller (0-10V signal).

VCC-Digital: Compressor whose capacity is modulated through the actuation of digital outputs (SSRs) to control unloaders valves.

Have this manual at the palm of your hand through the FG Finder application

5.TECHNICAL SPECIFICATIONS

Supply	24Vac 50/60Hz or 24Vdc \pm 10%
Maximum consumption	500mA ac/dc
Controller operating temperature	0 to 50°C
Operating humidity	10 to 90% UR (without condensation)
Type action	Type 1.B
Pollution degree	II
Software class	Class A
Control pressure	0.1 psi / 0.1 bar
Pressure resolution	-14,7 to 850psi / -1,0 to 58,7 bar
Control temperature	-50 to 200°C / -58 to 392°F
Temperature resolution	0.1°C / 0.1 °F across all range
Analog inputs	S1 to S6: Configurable between pressure sensor (4 to 20mA / SB69) or temperature sensor (SB19, SB41, SB59, SB70);
Voltage output for pressure sensors	Voltage output +12V: 12Vdc, Idcmax= 120mA;
Digital inputs	I1 to I5: dry contact type digital inputs. Hi1 to Hi3: Isolated digital inputs, with maximum voltage equal to the supply voltage (24V)
Analog outputs	A1 A2 = 0-10Vdc (max. 10mA)
Digital outputs	O1, O5 and O6: relay output (SPST) NA, 5(3)A/250Vac; O2, O3, and O4: output with solid state relay (SSR) 1A/24 - 240Vac
USB Interface	Compatible with the USB 2.0 Full-Speed Module (USBFS) standard; Data format for FAT32 pendrive / Maximum size of 32GB pendrive
RS-485 communication interface	RS485-1: Not insulated RS485-2: Insulated EXP: Communication with expansion modules
Product dimensions (LxAxP)	70,0 x 135,7 x 61,7 mm (2,76" x 5,34" x 2,43")

6.ELECTRICAL PRECAUTIONS

⚠ BEFORE INSTALLING THE CONTROLLER, WE RECOMMEND THAT THE FULL READING OF THE INSTRUCTION MANUAL BE DONE, IN ORDER TO AVOID POSSIBLE DAMAGE TO THE PRODUCT.

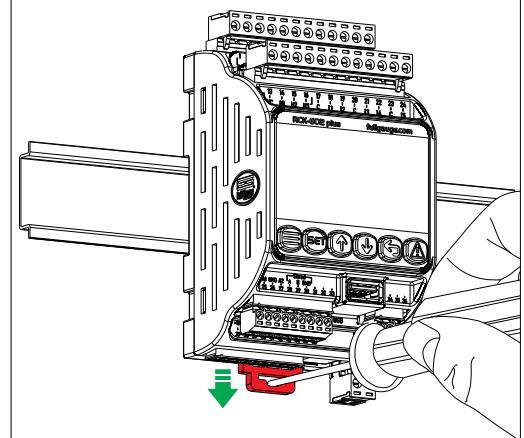
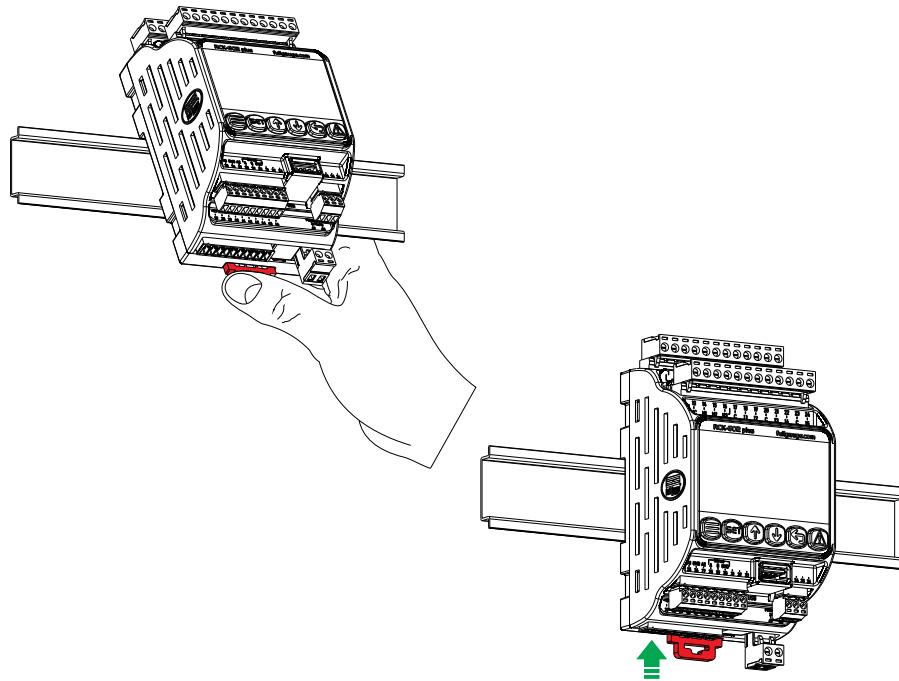
⚠ PRECAUTION WHEN INSTALLING THE PRODUCT:

- Before performing any procedure on this instrument, disconnect it from the power supply;
- Certify that the instrument has adequate ventilation, avoiding installation on panels that contain devices that may cause it to operate outside the specified temperature limits;
- Install the product away from sources that may generate electromagnetic disturbances, such as: motors, contactors, relays, solenoid valves, etc.

⚠ AUTHORIZED SERVICE:

- Installation or maintenance of the product must be performed only by qualified professionals.

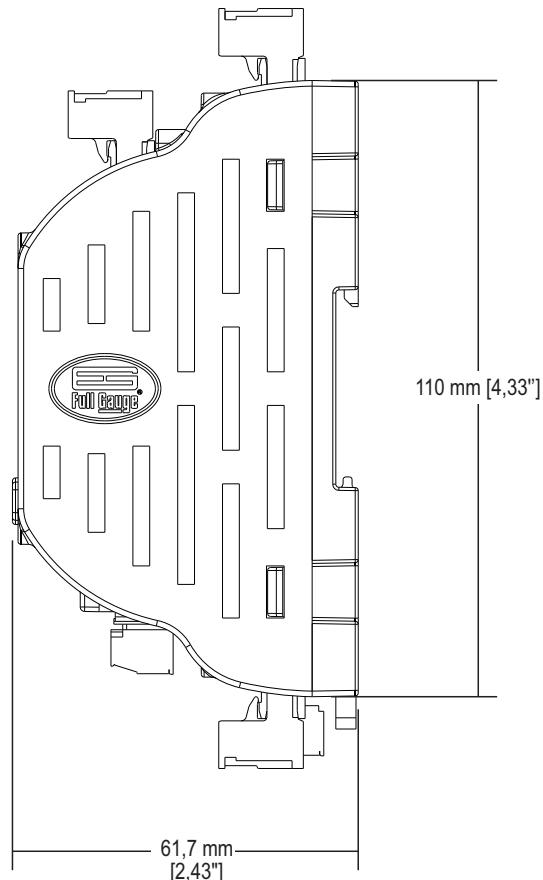
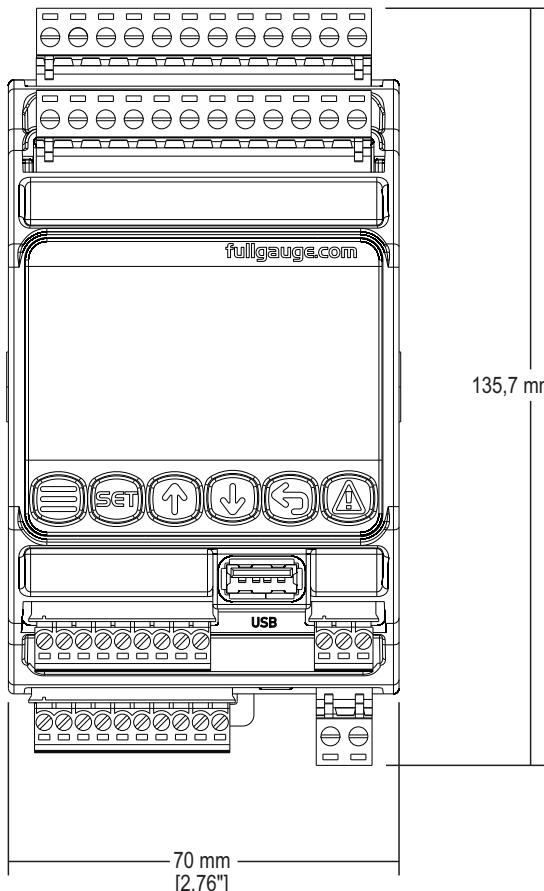
⚠ ACCESSORIES:

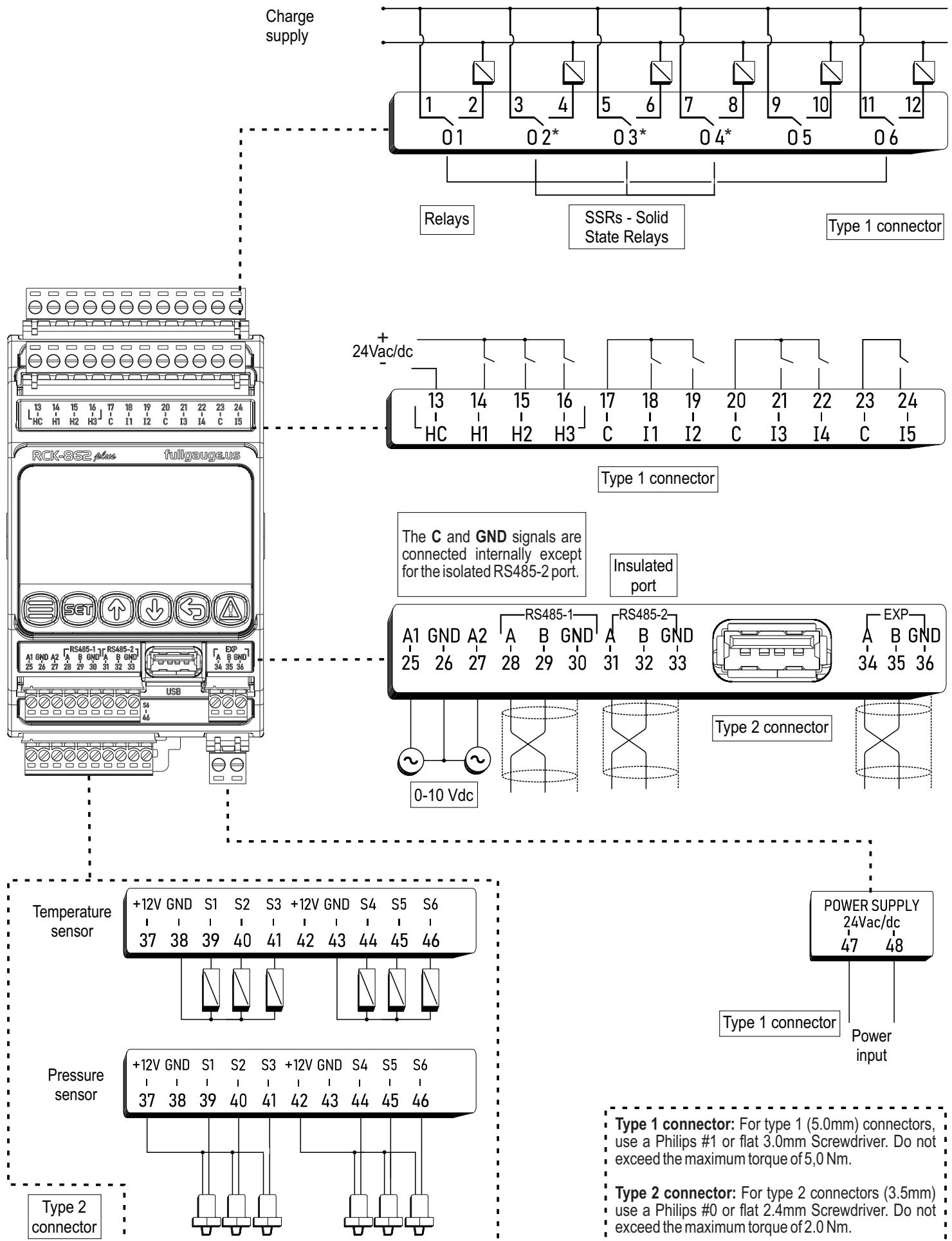


- Use only Full Gauge Controls original accessories;
- In case of doubt, contact technical support.

BEING IN CONSTANT DEVELOPMENT, FULL GAUGE CONTROLS RESERVES THE RIGHT TO CHANGE ANY INFORMATION IN THE MANUAL AT ANY TIME, WITHOUT PRIOR NOTICE.

7. INSTALLING THE RCK-862 *plus*

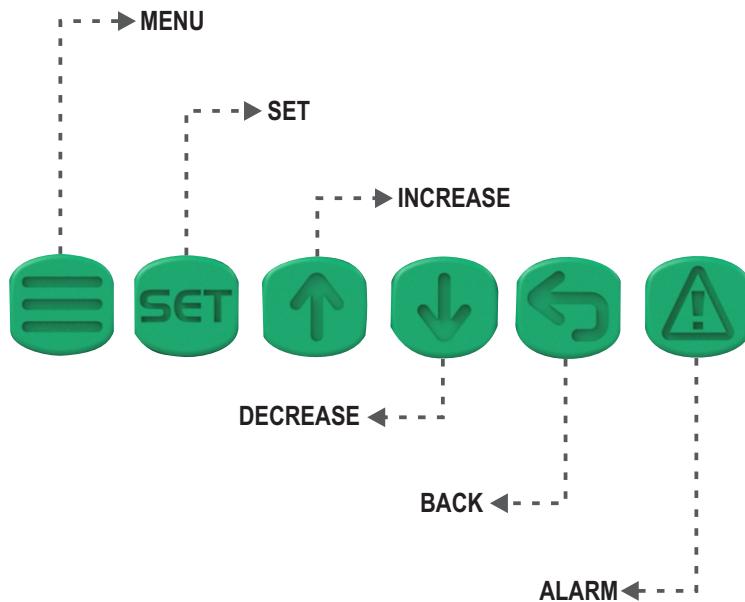
7.1 Fixing by DIN rail.



To fix the interface on the DIN rail, position the interface as shown and fit the top part.


To remove the controller from the DIN rail, use a wrench compatible with the size of the lock to make a lever.

8. DIMENSIONS

For a better fixation of the **RCK-862 *plus*** observe the product dimensions.


9.CONNECTION SCHEMATICS

Note: You can install up to 6 sensors configurable between temperature and pressure depending on the installation.

10. NAVIGATION KEYS

To toggle between screens, edit parameters, view advanced functions and other features, the **RCK-862 plus** has 6 navigation keys:

MENU key: Access the Main Menu and the Control Menu.

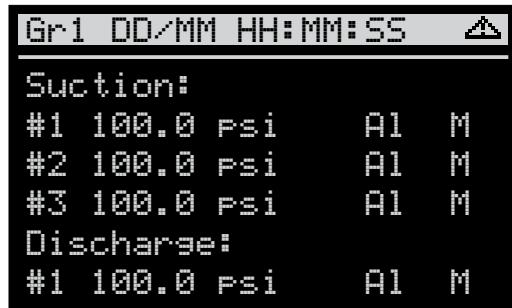
Control Menu: Press the MENU key.

Main Menu: Press and hold the MENU key for 2 seconds.

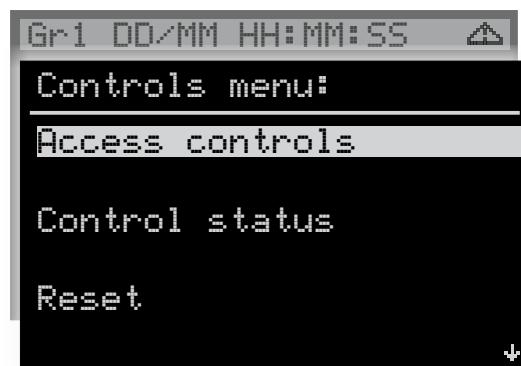
SET key: Confirms and edits the parameters and values.

INCREASE key: Increases values and navigates "up" in Menus.

DECREASE key: Decreases values and navigates "down" in the Menus.

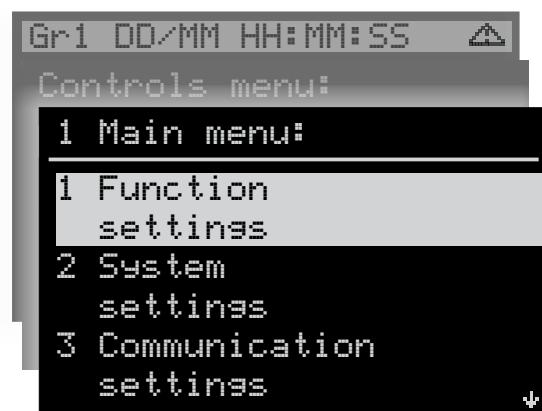

BACK key: Returns to the previous screen without confirming a parameter change.

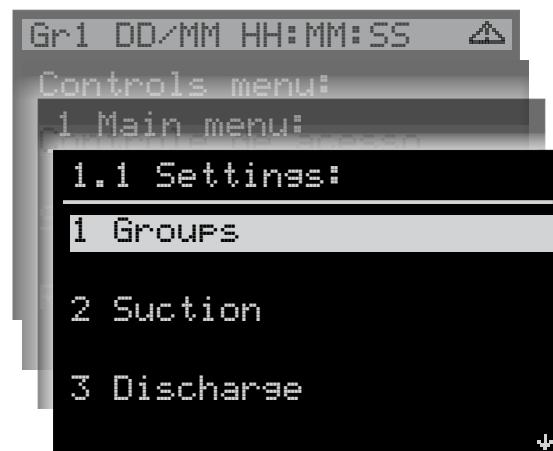
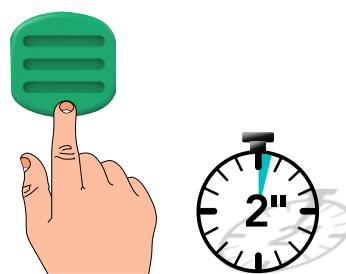
ALARM key: Access the display of active alarms, alarm history and alarms on reset.


Press the alarm key to switch between the Active Alarms, Alarm History and Reset Alarms screens. To clear the Alarm History, view the Alarm History and press and hold the Alarm key for 5 seconds.

Note: requires Administrator access level.

11. NAVIGATION TUTORIAL

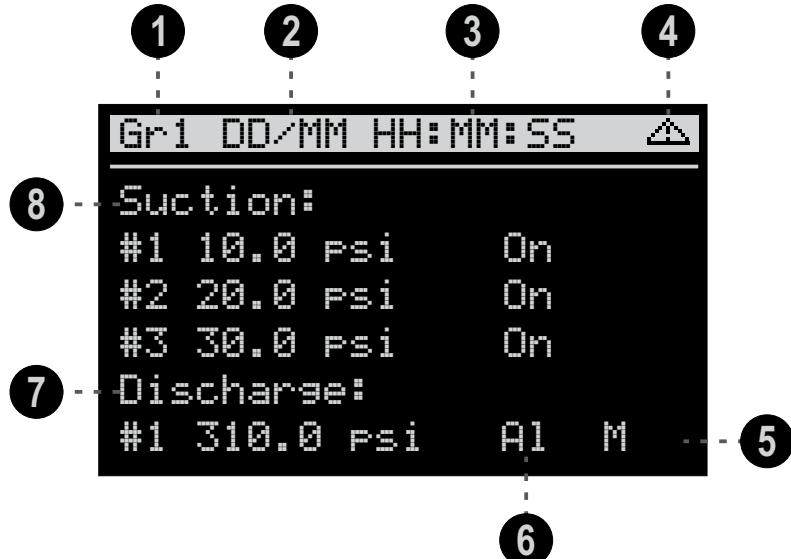

The first summary screen is the **GROUP 1** screen. You can find information about the controlled system.



A short press on the **MENU** key accesses the Control Menu. This menu presents the main commands and settings for system operation.

By using the **INCREASE** and **DECREASE** keys it is possible to navigate through the other summary screens.

Press the **MENU** key for 2 seconds to access the Main Menu. The Main Menu groups the cooling system settings to be controlled.

The **SET** key is used to access the selected item.



The **BACK** key is used to return to the configuration menus, with a short touch it is possible to return to the previous level.

12. SUMMARY SCREEN

12.1. Group summary screen:

Displays the basic status of the lines (Suction and/or Discharge) that make up the group, if configured. By default, the **RCK-862 plus** is configured with Suction 01 and Discharge 01 in Group 01. If the Group is not configured, access the **Main Menu → Function Settings → Groups**. For more information see section 18. Main Menu → Function 1 . 1 . 1

① – Group identification on display:

Gr1: Group 1;

Gr2: Group 2;

Gr3: Group 3.

② – DD/MM : Indicates the current date

③ – HH:MM:SS : Reports current time

④ – : Indication of active alarm

⑤ – Auxiliary indications:

M: At least 1 compressor or fan in maintenance

Eco: When the economy setpoint is active

Pd: In the process of Pump Down

FLT: Active floating condensation

ADI: Active adiabatic condensation

⑥ – Indication of control status:

Wait: Waiting for control to start

On: Turn On

Off: Turn Off

Lock: Locked

A1: In alarm or automatic reset

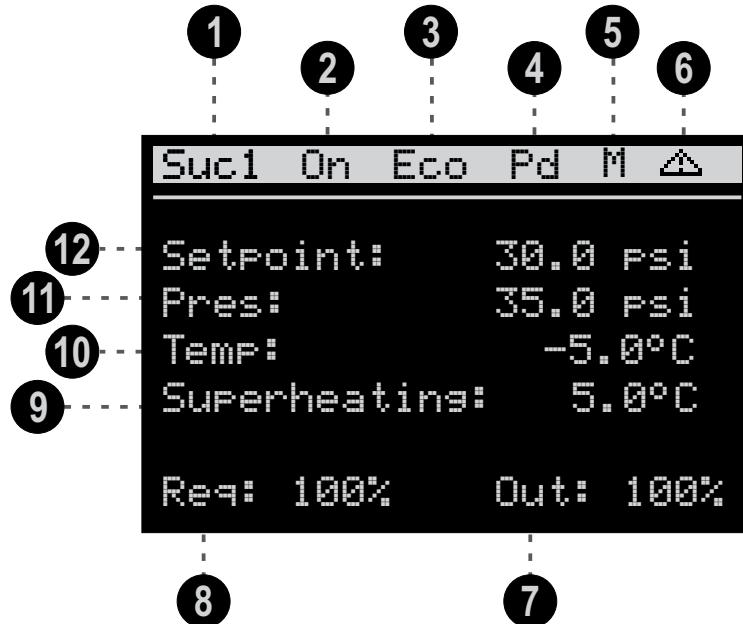
A1 (Blinking): Waiting for manual reset

Cfg: Absence of any configuration parameter.

⑦ – Displays the discharge pressure switch configured for the group. If there is no discharge enable, an empty line will display.

Note: The group number determines the number of the discharge line that will be used. For example, discharge 03 will only be used in group 03.

⑧ – Displays the number of suction pressure switches configured for the group. If there is no suction enabled, an empty line will display.


Note: When more than one auxiliary function is active on the same line (Suction or Discharge), the icons will alternate on the display.

12. SUMMARY SCREEN

12.2. Suction summary screen:

On this screen it is possible to view the basic suction status.

To configure the Suction lines, access the **Main Menu** → **Function settings** → **Suction**. For more information see section 18. Main Menu → function 1.1.2

① – Identification of the suction line on display:

Suc1: Suction 1;

Suc2: Suction 2;

Suc3: Suction 3.

⑥ – **⚠**: Indication of active alarm

⑦ – **Out**: Percentage of power referring to the active outputs by **RCK-862 plus**.

⑧ – **Req**: Percentage of power required by the system for the operating interval

⑨ – **Superheating**: Calculation of overheating based on pressure, temperature, and type of parameterized refrigerant. If the controller identifies that the suction is working in the trans critical part of the refrigerant, the message PC will be displayed.

⑩ – **Temp**: It is the value of the suction evaporation temperature sensor

⑪ – **Pres**: It is the pressure value read by the suction transducer

⑫ – **Setpoint**: Display the current value of the setpoint, it can be the economy pressure setpoint or the main pressure setpoint. (Depending on which is active).

② – Control status indication:

Wait: Wait for control to start

On: turn On

Off: turn Off

Lock: Locked

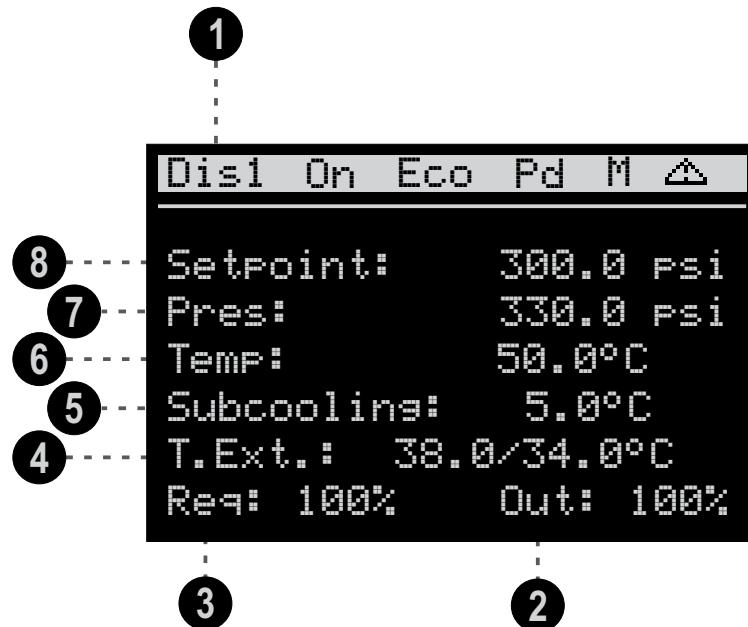
A1: In alarm or automatic reset

A1 (Blinking): Waiting for manual reset

Cfg: Line with no configuration parameter

③ – **Eco**: Active economy setpoint

④ – **Pd**: In the process of Pump Down


⑤ – **M**: At least 1 compressor in maintenance

12. SUMMARY SCREEN

12.3. Discharge summary screen:

Displays the basic status of the enabled Discharge line.

To configure the Discharge lines, access the **Main Menu → Function Configuration → Discharge**. For more information see section 18. Main Menu → Function 1.1.3

1 – Identification of the discharge line on display:

Des1: Discharge 1

Des2: Discharge 2

Des3: Discharge 3

2 – Out: Percentage of power referring to the active outputs by the **RCK-862 plus**

3 – Req: Percentage of power required by the system for the operation interval

4 – T. Ext.: Represents the value of the external temperature sensor (s) used in the floating and adiabatic condensations. The value on the left indicates the value of the dry bulb temperature sensor (configured in menu 1.3. x). The value on the right represents the wet bulb sensor (configured in Adiabatic Condensation - 1.7.3. x). This information will only be displayed if the sensors are parametrized.

5 – Subcooling: Calculation of subcooling based on pressure, temperature, and type of refrigerant settings. If the controller identifies the suction that is operating in the trans critical part of the refrigerant, the message PC will be displayed

6 – Temp: It is the discharge value, used to measure the subcooling

7 – Pres: It is pressure value read by the discharge transducer

8 – Setpoint: Displays the active pressure or temperature setpoint value. It can be the main or economy setpoint or resulting from the calculation of the floating condensation logic

12. SUMMARY SCREEN

12.4. Continuation of summary screens:

For each suction and discharge it has a summary screen where you can see how many outputs are connected and their respective status. After the equal sign, you can see the percentage of the control outputs connected with each compressor and fan that are on. It can even monitor the capacity control status (unloaders valves and inverter output).

1

Suc1	On	Eco	Pd	M	▲
C1:	A SS			= 100%	
C2:	P U1 U2 U3			= 100%	
C3:	P U1 U2 U3			= 75%	
C4:	P U1 U2 U3			= 50%	
C5:	P U1 U2 U3			= 25%	
C6:	P U1 U2 U3			= 0%	

2

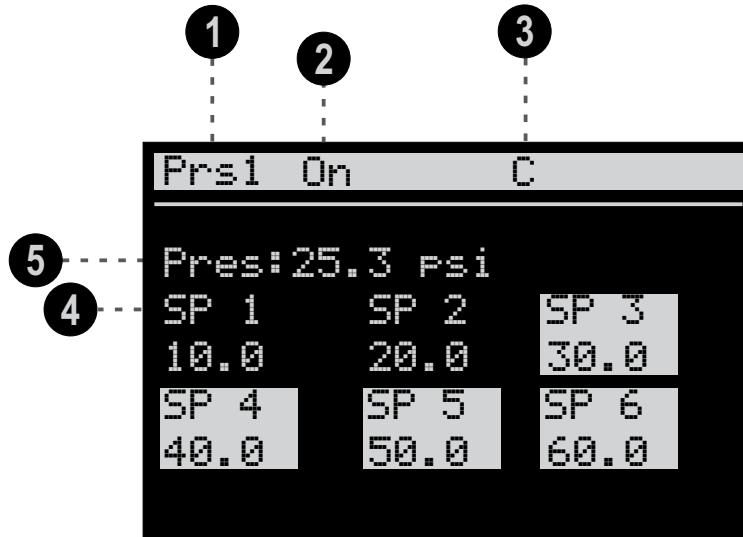
1 **2**

Dis1	On	Eco	Pd	M	▲
F1:	A SS			= 100%	
F2:	P			= 100%	
F3:	P			= 100%	
F4:	P			= 100%	
F5:	P			= 100%	
F6:	P			= 0%	

3

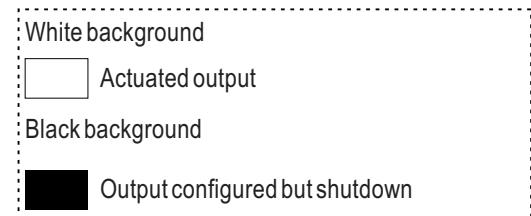
- 1** – The letter P represents the activation of the compressor's main output. When digital output P is indicated with a white background, it means that is relay is activated. The letter A symbolizes the analog (proportional) output-compressor configured as an inverter. For values above 0% the letter A is displayed with a white background
- 2** – This value represents the percentage of the power supplied by each compressor
- 3** – The auxiliary outputs (unloaders) are represented by the letter U. The Start-Stop output of the compressor with VCC-Analog modulation will be represented by the letters SS
- 4** – Lists all compressors enabled on the suction pressure switch.

- 1** – The letter P represents the actuation of the fan output. When digital output P is indicated with a white background, it means that its relay is activated. For fans with inverter modulation (only the F1 fan can be configured) the letter A symbolizes the value of the analog output. For values above 0% the letter A will be shown with a white background.
- 2** – For fans with modulation, the SS symbol represents the status of the Start-Stop output. When this output is activated, it is represented with a white background.
- 3** – This value represents the percentage of the power supplied by each fan
- 4** – It lists all enabled fans of the discharge line, there may be a total of six.


White background
□ Actuated output
Black background
■ Output configured but shutdown

12. SUMMARY SCREEN

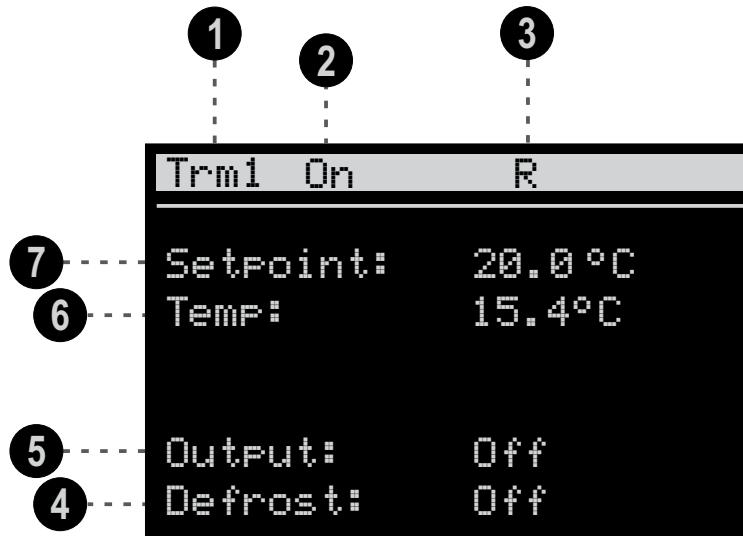
12.5. Individual pressure switches:


The individual pressure switch screens are accessed from the Control Menu.

To toggle between the available pressure switches just navigate using the keys and .

- ① — Pressure switch on display Prs1, Prs2 or Prs3.
- ② — On-turned on;
Off-turned off.
- ③ — Operation mode:
C: compression;
D: decompression.

- ④ — Displays the setpoint for each digital output of the individual pressure switch.
Assemblies/Sets shown with a white background indicate that the respective output is active. In this example, output 1 and 2 are off and outputs 3, 4, 5 and 6 are on.
- ⑤ — Control pressure value

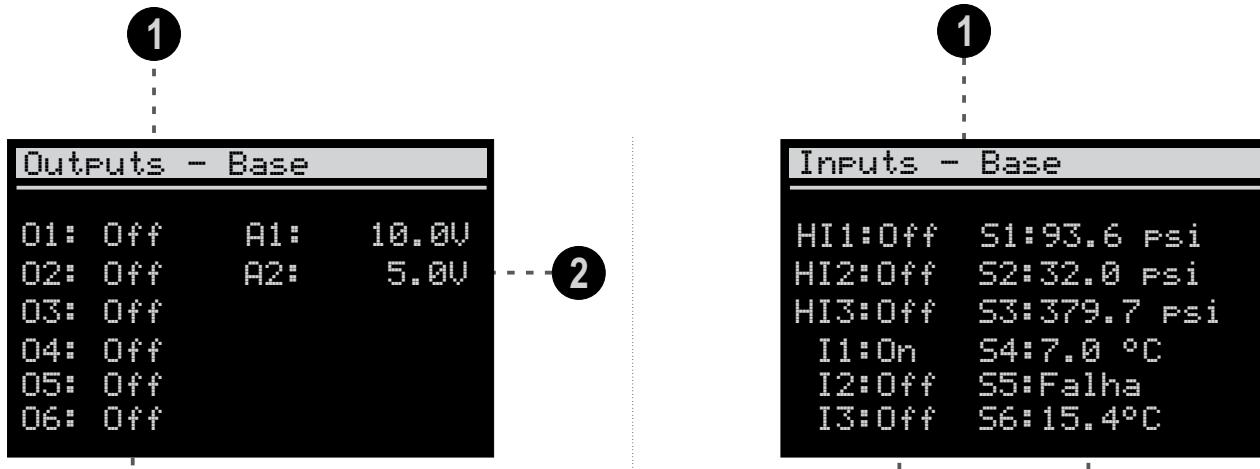


12. SUMMARY SCREEN

12.6. Individual thermostats:

The individual thermostat screens are accessed from the Control Menu

To toggle between the available pressure switches just navigate using the keys and .

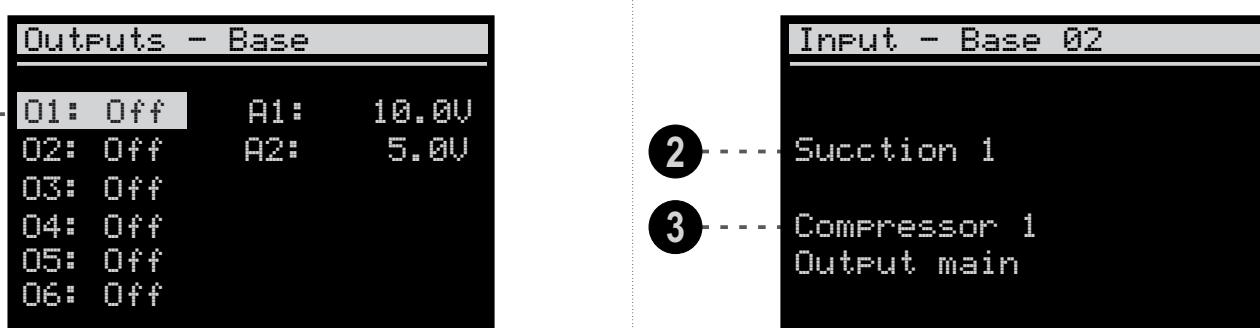


- 1 – Thermostat on display:
Trm1: Individual thermostat 1
Trm2: Individual thermostat 2
Trm3: Individual thermostat 3
- 2 – On - turned on;
Off - turned off
Def - defrost
- 3 – Operation mode:
A: heating
R: refrigeration
- 4 – Defrost output status
- 5 – Control output status
- 6 – Control temperature value
- 7 – Temperature setpoint

12. SUMMARY SCREEN

12.7. Inputs and outputs:

The input and output menu allows you to view the status of all inputs and outputs of the **RCK-862 plus** and its configured expansion modules, as well as to check their function.


1 — Indicates which equipment is being viewed

2 — Indicates the status or value of the output

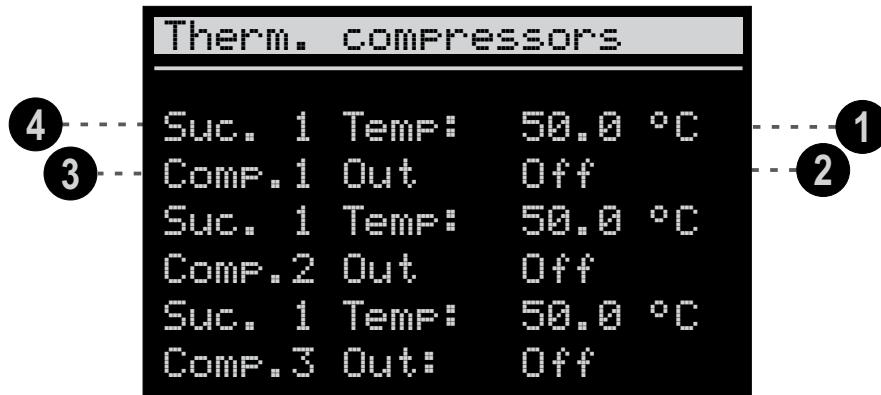
1 — Indicates which equipment and item are being viewed

2 — Indicates the status or value of the input

To see which function is assigned to a particular output or input, press the **SET** key navigate to the desired item using the keys **↑** and **↓** press **SET** again.

1 — Indicates the selected item

2 — Indicates the connected pressure switch


3 — Indicates the function of the selected item

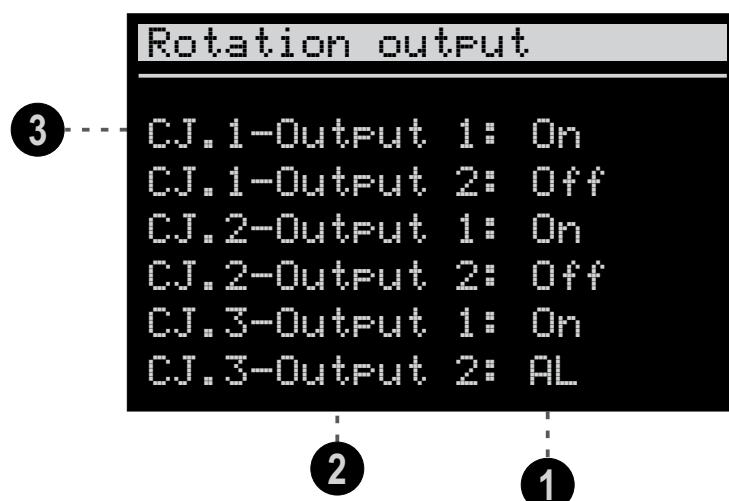
12. SUMMARY SCREEN

12.8. Compressor protection thermostats:

Thermostat information is accessed from the Control Menu.

To toggle between the available compressors just navigate using the keys and .

1 — Compressor temperature

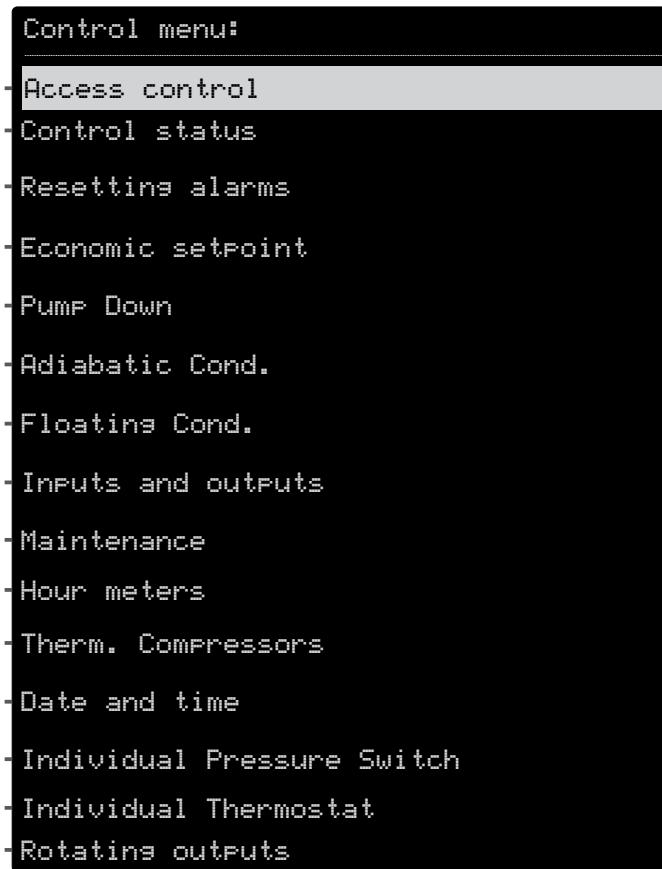

3 — Compressor reference

2 — Protection output status

4 — Suction line

12.9. Rotation outputs:

It allows viewing the status of the outputs of the sets of rotation outputs.


1 — Indicates the output index
On: Output on
Off: Output off
AL: Alarm output

3 — Indicates the set to which the output belongs

2 — Indicates the output index

13. CONTROL MENU

The Control Menu is accessible by pressing the key, has settings and commands for easy access to the operations of the **RCK-862 plus**.

1 – Access control:
According to the access level, the user can take different action on the **RCK-862 plus**. You can adjust 3 access levels:
-Viewer:
Standard mode, there is no need to enter code.
-Technical:
Allows you to make changes to some system parameters.
Technical level is activated by entering code 123.
-Administrator:
Allows you to make changes to all system parameters (normally used when performing the initial system configuration).
Administrator level is activated by entering code 717.
In an invalid code is entered or the **RCK-862 plus** is idle for 15 minutes, it automatically returns to Viewer mode.

2 – Control status:
You can turn the system control on or off. When turned off, the **RCK-862 plus** only monitors the system but without taking any action.
Note: Changing some functions such as downloading recipes requires that the controller be turned off.

3 – Resetting alarms:
Reset the pressure switches in manual or automatic reset condition.
Once the resetting is done, this will be recorded in the alarm history.

4 – Economy setpoint:
Activates the economic setpoint for each group of pressure switches.

5 – Pump Down:
Activates the Pump Down function for each group of pressure switches.

6 – Adiabatic Condensation:
Enables and disables adiabatic condensation logic for each discharge pressure switch.

7 – Floating Condensation:
Enables and disables floating condensation logic for each discharge pressure switch.

8 – Inputs and outputs:
A summary of the **RCK-862 plus** inputs and outputs is displayed, indicating the sensor reading value, the status of the digital inputs and control outputs.

9 – Maintenance:
Compressors or fans are viewed and selected to enter maintenance mode. When the equipment is in the maintenance state, it remains off.

10 – Hour meters:
Indicates the number of hours that each compressor or fan remained in operation.

11 – Compressor protection thermostat:
View of compressor protection thermostats.

12 – Date and time:
Adjusts the current date and time. This field is important for alarm and logic records that use a clock.

13 – Individual pressure switch:
View of the summary screens of the individual pressure switches.

14 – Individual thermostat:
View of the summary screens of the individual thermostats.

15 – Rotation outputs:
View of the screens of the sets of outputs with rotation.

14.SUCTION CONTROLS

14.1 Suction Control:

The suction control parameters are set in the following menu: **Main menu → 1.Functions Settings → 2.Suction**.

Compressor control is linked with a suction pressure switch. The **RCK-862 plus** allows the control of up to 3 suction pressure switches with up to 6 compressors each. The digital outputs indicated as O1, O2...O6, are in charge of the on-off control (On/Off) of compressors and unloaders valves, while the analog outputs, indicated as A1 and A2, emit a 0-10V signal for frequency inverters or other devices. The **RCK-862 plus** controls up to three unloader valves per compressor, having a Control Mode for variable compressors such as the Bitzer CRII.

Note: Alarms on the discharge pressure switches can also act on the suction compressors.

14.2 Compressor modulation On/Off:

Each compressor manufacturer has its own way of controlling capacities in its compressors. The most common compressors have two stages of operation: on or off. In this case, on/off modulation is used. When there are compressors with the possibility of regulating their capacity by means of actuators of step-type unloaders, the type is selected according to the options below:

On/Off (On / Off) - Compressor that uses only one digital output (relay) for its actuation.

On/Off 50|100 - A main output and an auxiliary output are linked for 3-stage compressor control.

On/Off 33|66|100 - A main output and 2 auxiliary outputs are linked for 4-stage compressor control.

On/Off 50|75|100 - A main output and 2 auxiliary outputs are linked for 4-stage compressor control.

On/Off 25|50|75|100 - One main output and 3 auxiliary outputs are linked for 5-stage compressor control.

An activation mode is defined (1 . 2 . 1 . 28 - (33)) to determine the sequence of operation of the control outputs according to the construction of the compressor and connected with the modulation of the On/Off compressors.

The main menu output, the first to be actuated and the last to be shutdown, is normally used to drive the compressor motor. While the auxiliary outputs are normally used to start or stop, an unloader valve is used for regulating the compressor capacity.

The **RCK-862 plus** has 3 activation modes as shown in the table below:

Incremental Mode				Unloader Mode				Selective Mode			
Modulation ON/OFF 50 100				Modulation ON/OFF 50 100				Modulation ON/OFF 50 100			
Capacity	Main	Aux 1	Aux 2	Main	Aux 1	Aux 2	Aux 3	Main	Aux 1	Aux 2	Aux 3
Off	○	○	-	-	○	○	-	○	○	-	-
50%	●	○	-	-	●	●	-	●	●	-	-
100%	●	●	-	-	●	○	-	●	○	-	-
Modulation ON/OFF 33 66 100				Modulation ON/OFF 33 66 100				Modulation ON/OFF 33 66 100			
Capacity	Main	Aux 1	Aux 2	Main	Aux 1	Aux 2	Aux 3	Main	Aux 1	Aux 2	Aux 3
Off	○	○	○	-	○	○	○	○	○	○	-
33%	●	○	○	-	●	●	●	-	●	○	-
66%	●	●	○	-	●	●	○	-	●	●	-
100%	●	●	●	-	●	○	○	-	●	○	-
Modulation ON/OFF 50 75 100				Modulation ON/OFF 50 75 100				Modulation ON/OFF 50 75 100			
Capacity	Main	Aux 1	Aux 2	Main	Aux 1	Aux 2	Aux 3	Main	Aux 1	Aux 2	Aux 3
Off	○	○	○	-	○	○	○	○	○	○	-
50%	●	○	○	-	●	●	●	-	●	○	-
75%	●	●	○	-	●	●	○	-	●	●	-
100%	●	●	●	-	●	○	○	-	●	○	-
Modulation ON/OFF 25 50 75 100				Modulation ON/OFF 25 50 75 100				Modulation ON/OFF 25 50 75 100			
Capacity	Main	Aux 1	Aux 2	Main	Aux 1	Aux 2	Aux 3	Main	Aux 1	Aux 2	Aux 3
Off	○	○	○	-	○	○	○	○	○	○	○
25%	●	○	○	-	●	●	●	●	●	○	○
50%	●	●	○	-	●	●	●	○	●	●	○
75%	●	●	●	-	●	●	○	○	○	○	●
100%	●	●	●	-	●	○	○	○	●	○	○

Key:

● - Output on
○ - Output off

Example: For a compressor with two unloaders where each valve removes 33.3% of the compressor capacity, you can select the compressor modulation as On/Off 33 | 66 | 100 (parameter 1 . 2 . x . 22 - (27)). An output is defined for the compressor motor, associated with the main output (1 . 2 . x . 37) and two auxiliary outputs for the unloader valves (1 . 2 . x . 38 and 1 . 2 . x . 39). The behavior of the auxiliary outputs is defined by the parameter "Compressor activation mode" (1 . 2 . x . 28 - (33)).

In "Incremental mode" when only the main compressor output is activated, the controller assumes that the compressor works at 33.3% of its capacity. When actuating auxiliary output 1 it will increase the capacity to 66.6% and when actuating auxiliary output 2 to 100% of the compressor's nominal capacity. In "unloader mode" when the compressor output is actuated, the controller assumes that the compressor works at 100% of its capacity. When actuating auxiliary output 1, the activated capacity will be 66.6% and when the second auxiliary output is actuated, the activated capacity will be 33.3% of the nominal capacity.

In "Selective mode" when only the main compressor output is actuated, the controller assumes that the compressor works at 100% of its capacity. When actuating auxiliary output 2, there is 66.6% and when auxiliary output 2 is switched off and on, auxiliary output 1 has 33.3% of the compressor's nominal capacity.

14.3 Modulation of Variable Capacity Compressors (VCC):

Variable Capacity Compressors (VCC) are compressors controlled by means of an analog output (VCC-Analog) or by means of fast-acting digital outputs (VCC-Digital).

Only compressor 1 of each suction pressure switch can be configured as VCC and when operating together with ON / OFF compressors it is the first to be actuated and the last to be shutdown.

14.3.1 VCC-Analog:

To control an analog variable capacity compressor, a 0-10V analog output and optionally a digital Start/Stop output are used. The analog output selected in function 1 . 2 . x . 36 is configured in menu 1.10 according to the characteristics of the device to the controlled (frequency inverter or digital control module). The start of modulation of the output (compressor start) occurs when the difference between the measured pressure and the setpoint is equivalent to or greater than the configured minimum value. If a starting value of the analog output (1 . 10 . x . 3) is configured, the **RCK-862 plus** applies this value during the starting time (1 . 2 . x . 67)

14.3.2 VCC-Digital:

To control a compressor of the VCC-Digital type, it is necessary to configure a digital output for motor activation and one or more fast-acting outputs (SSR) for actuation of capacity modulation valves. During compressor operation, only one valve is modulated while the others remain on or off. The choice of which valve should be modulated is made automatically considering the smallest number of actuations between the valves of the same compressor, thus increasing the life span of the assembly.

The compressor starts when the required capacity is greater than the value configured in VCC-Digital: Minimum capacity (1 . 2 . x . 69) and remains operating without load during the time configured in VCC: Starting time (1 . 2 . x . 67).

The Algorithm present in the **RCK-862 plus** automatically determines when the auxiliary outputs are to be actuated. If it is of interest to carry out the control of the valves at fixed time intervals, select the desired period in the parameter VCC-Digital: Control period (1 . 2 . x . 70).

Each digital compressor manufacturer determines limitations for the minimum activation time of the modulation valves, which can be configured in VCC-Digital: Minimum valve activation time (1 . 2 . x . 71).

The maximum time that the compressor can operate without load can be configured in VCC-Digital: Maximum time without load (1 . 2 . x . 72), when this time elapses the compressor actuates one of its modulation valves (increasing the flow of refrigerant in the compressor) for the same time configured in (1 . 2 . x . 72). A compressor start time can be configured, according to:

Note: Re-balance a shorter starting time than the maximum time without a load (1 . 2 . x . 72).

The **RCK-862 plus** allows the control of several variations of digital compressors, allowing the modulation of compressors from one to three auxiliary control valves. For the correct selection, it is necessary to evaluate which configuration meets the compressor characteristics, according to:

VCC-Digital 10-100 1V: One main output for compressor activation and one digital output (SSR) for modulation of auxiliary valves. The main output is considered to represent 0% of the compressor capacity.

VCC-Digital 10-100 2V: One main output for compressor activation and two digital outputs (SSR) for modulation of two auxiliary valves. The main output is considered to represent 0% of the compressor capacity.

VCC-Digital 10-100 3V: One main output for compressor activation and three digital outputs (SSR) for modulation of three auxiliary valves. The main output is considered to represent 0% of the compressor capacity.

VCC-Digital 33-100 1V: One main output for compressor activation and one digital output (SSR) for modulation of auxiliary valves. The main output is considered to represent 33% of the compressor capacity.

VCC-Digital 33-100 2V: One main output for compressor activation and two digital outputs (SSR) for modulation of two auxiliary valves. The main output is considered to represent 33% of the compressor capacity.

VCC-Digital 50-100 1V: One main output for compressor activation and one digital output (SSR) for modulation of auxiliary valves. The main output is considered to represent 50% of the compressor capacity.

The following table illustrates the behavior of the outputs in relation to the capacity required by the compressor without considering the rotation of the outputs

Modulation off VCC-Digital compressors

Modulation VCC-Digital 10-100 1V					Modulation VCC-Digital 33-100 1V					Modulation VCC-Digital 50-100 1V				
Capacity	Main	Aux 1	Aux 2	Aux 3	Capacity	Main	Aux 1	Aux 2	Aux 3	Capacity	Main	Aux 1	Aux 2	Aux 3
Off	○	○	-	-	Off	○	○	-	-	Off	○	○	-	-
10-100%	●	●	-	-	33-100%	●	●	-	-	50-100%	●	●	-	-
>100%	●	○	-	-	>100%	●	○	-	-	>100%	●	○	-	-
Modulation VCC-Digital 10-100 2V					Modulation VCC-Digital 33-100 2V					Modulation VCC-Digital 10-100 3V				
Capacity	Main	Aux 1	Aux 2	Aux 3	Capacity	Main	Aux 1	Aux 2	Aux 3	Capacity	Main	Aux 1	Aux 2	Aux 3
Off	○	○	○	-	Off	○	○	○	-	Off	○	○	○	○
10-50%	●	●	●	-	33%	●	●	●	-	10-33%	●	●	●	●
50-100%	●	○	●	-	66%	●	○	●	-	33-66%	●	○	●	●
>100%	●	○	○	-	100%	●	○	○	-	66-100%	●	○	○	●

Key

- - Output on
- - Output off
- - Modulated output

Note: It is assumed that when a valve is activated, the controlled element operates without load and the compressor capacity is reduced.

14.4 Control Modes:

Each suction pressure switch can be programmed, in parameter **1.2.x.1**, to operate according to one of the Control Modes: Linear Mode, Rotation Mode, Dead Zone Mode, Dead Zone Mode with rotation and Progressive Algorithm Mode.

14.4.1 Linear Mode:

Linear mode is applied when using compressors of the same capacity, combined or not with a compressor with proportional modulation (inverter). Compressors and their unloader valves are activated (if configured) sequentially and at equal pressure intervals. It follows the ascending order according to its nomenclature and shutdown.

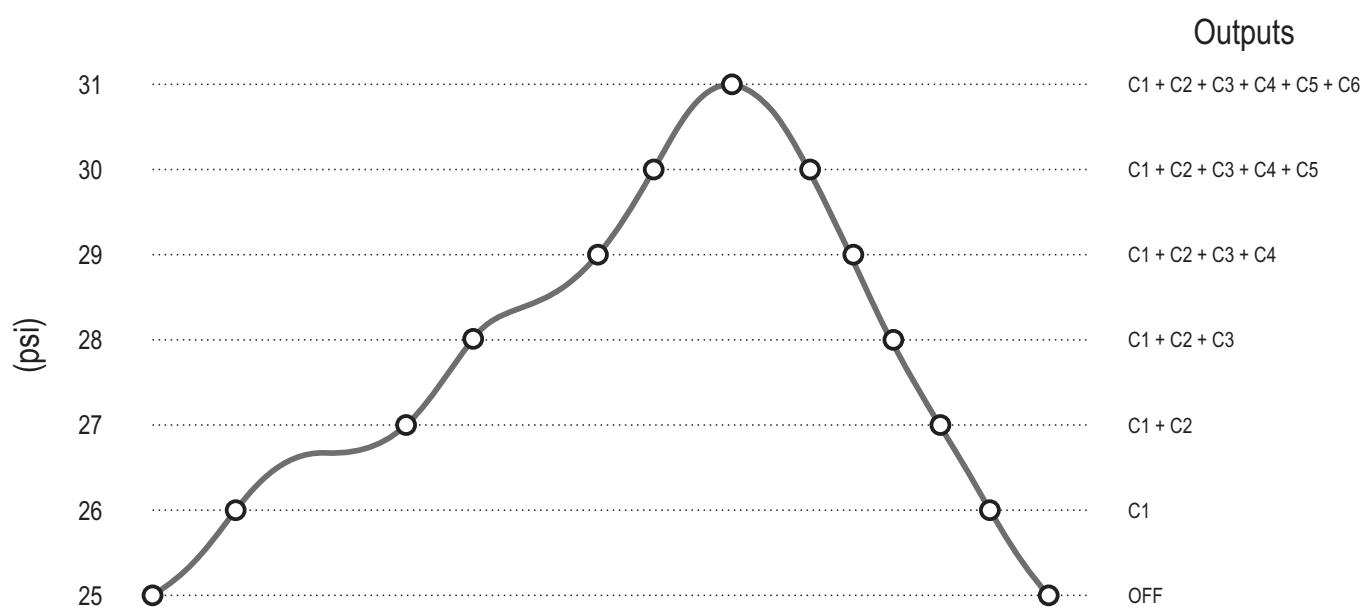
14.4.1.1 Linear mode connected only with digital outputs - ON/OFF compressors + Unloaders

The Linear control mode, when it has only digital outputs connected, commands the actuation and shutdown of each compressor sequentially and with pressure intervals of the same magnitude (step). The **RCK-862 plus** uses a setpoint value and pressure hysteresis to control the suction of the compressors. If the compressors have unloaders valves (auxiliary outputs), the logic of actuation and shutdown can be chosen according to parameters **1.2.x.34** and **1.2.x.35**

The digital outputs are linked with the compressors in the **Main Menu → 1.Function settings → 1.2 Suction**. The **RCK-862 plus** defines the actuation and shutdown points according to the hysteresis value and the number of compressors configured in the suction, according to the "step" variable defined below:

$\text{Step} = \frac{\text{Digital outputs actuation step}}{\text{Digital hysteresis} + \text{Number of outputs}}$	Actuation output pressure value for output "N" $\text{Actuation} = \text{Setpoint} + (N \times \text{Step})$ Shutdown output pressure value of output "N" $\text{Actuation} = \text{Setpoint} + (N - 1 \times \text{Step})$
--	--

Example: Linear control linked only with ON-OFF compressors


ON/OFF compressors only

When using on / off compressors (ON / OFF), each compressor is associated with only one output, so the Step is equal to hysteresis by dividing the number of compressors

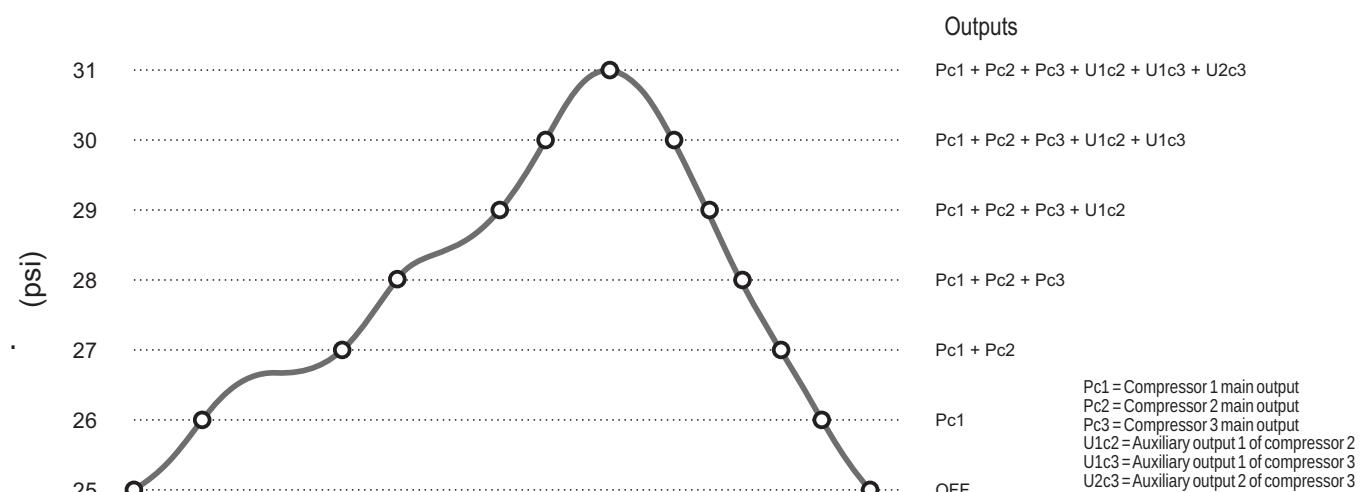
1.2.x.1 Control mode: Linear
1.2.x.2 Setpoint: 25 psi
1.2.x.4 On/Off Hysteresis: 6 psi
1.2.x.15 Number of compressors: 6
1.2.x.22 Compressor 1 modulation: ON/OFF

1.2.x.23 Compressor 2 modulation: ON/OFF
1.2.x.24 Compressor 3 modulation: ON/OFF
1.2.x.25 Compressor 4 modulation: ON/OFF
1.2.x.26 Compressor 5 modulation: ON/OFF
1.2.x.27 Compressor 6 modulation: ON/OFF

In this case, each compressor is associated with a digital output and the Step is defined as $6/6 = 1$ psi

14.SUCTION CONTROLS

Example: Linear control linked with digital outputs from compressors with unloaders


On/Off compressors with unloaders.

In the compressors that use the unloader capacity regulation valve, the logic for actuating and shutting down the main relays and auxiliary unloader valves is chosen according to parameters 1.2.x.34-Sequence of actuations and 1.2.x.35-Sequencing of shutdowns.

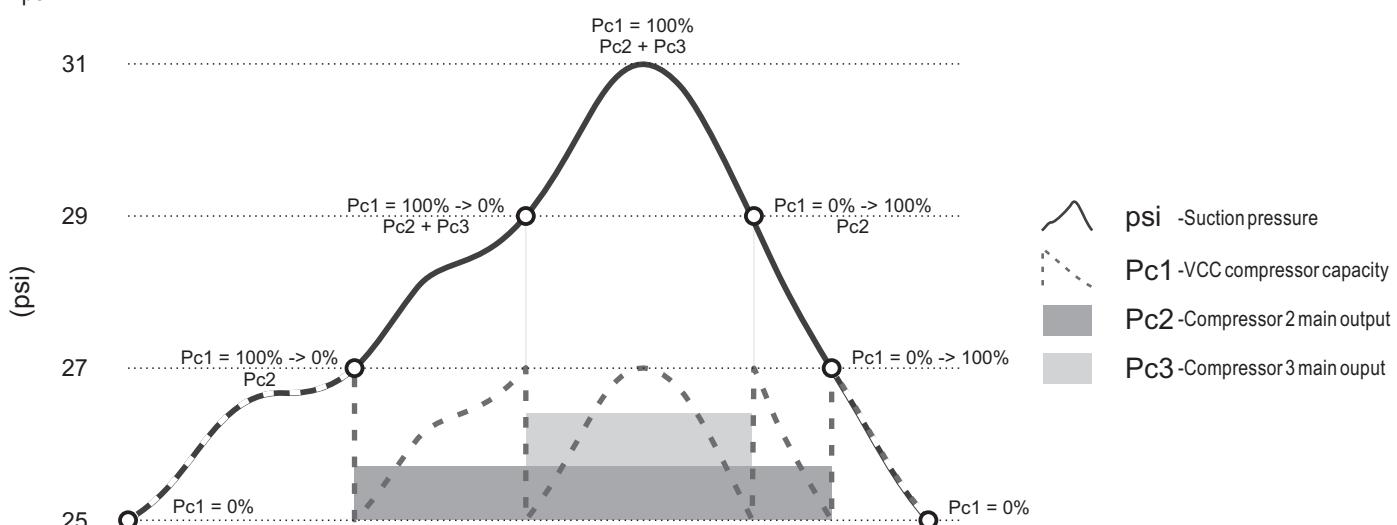
1.2.x.1 Control mode: Linear
 1.2.x.2 Setpoint: 25 psi
 1.2.x.4 On/Off Hysteresis: 6 psi
 1.2.x.15 Number of compressors: 3
 1.2.x.22 Compressor 1 modulation: ON/OFF

1.2.x.23 Compressor 2 modulation: On/Off 50/100
 1.2.x.24 Compressor 3 modulation: On/Off 33/66/100
 1.2.x.28 Compressor 2 activation mode: Incremental
 1.2.x.29 Compressor 3 activation mode: Incremental
 1.2.x.34 Activation sequence: PPuu
 1.2.x.35 Deactivation sequence: PPuu

Compressor 1 is of the ON/OFF type and requires only one digital output connected to it. Compressor 2 has an unloader valve, so it is connected to two digital outputs (main and auxiliary 1). Compressor 3 has two unloader valves, so it is connected to three digital outputs (main, auxiliary 1 and auxiliary 2). The total number of digital outputs is six and its step is defined as: $6/6 = 1$ psi.

14.4.1.2 Linear Mode associated with a VCC compressor in conjunction with ON/OFF compressors:

When the VCC compressor, analog or digital, operates together with On/Off compressors - with or without unloaders - the control is done through a setpoint value and two hysteresis. The hysteresis of the VCC compressor (1.2.x.5) corresponds to the pressure range for controlling the output of compressor 1 and the hysteresis of the On/Off compressors (1.2.x.4) corresponds to the control range of the other compressors.


The VCC compressor is the first to be actuated and the last to be shutdown. There is a validation time (1.1.x.68) for starting or stopping compressors or unloaders valves when the compressor reaches its upper or lower limit of actuation. For each compressor or unloader actuated or shutdown, the capacity of the VCC compressor is recalculated to compensate for the portion added or removed.

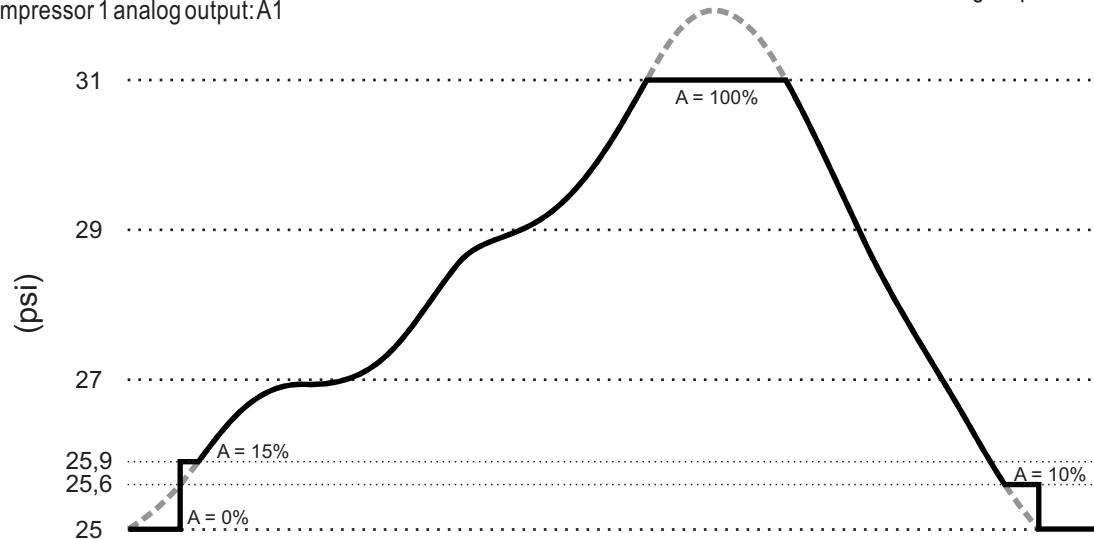
Example:

1.2.x.1 Control mode: Linear
 1.2.x.2 Setpoint: 25 psi
 1.2.x.4 Hysteresis On/Off: 4psi
 1.2.x.5 VCC hysteresis: 2psi
 1.2.x.9 Integral time: Off

1.2.x.15 Number of compressors: 3
 1.2.x.22 Compressor 1 modulation: VCC-Analog
 1.2.x.23 Compressor 2 modulation = On/Off
 1.2.x.24 Compressor 3 modulation = On/Off

Compressor 1 (proportional) uses analog output (0-10V), compressors 2 and 3 each use a digital output. The step of the digital outputs is defined as: $4/2 = 2$ psi.

14.SUCTION CONTROLS

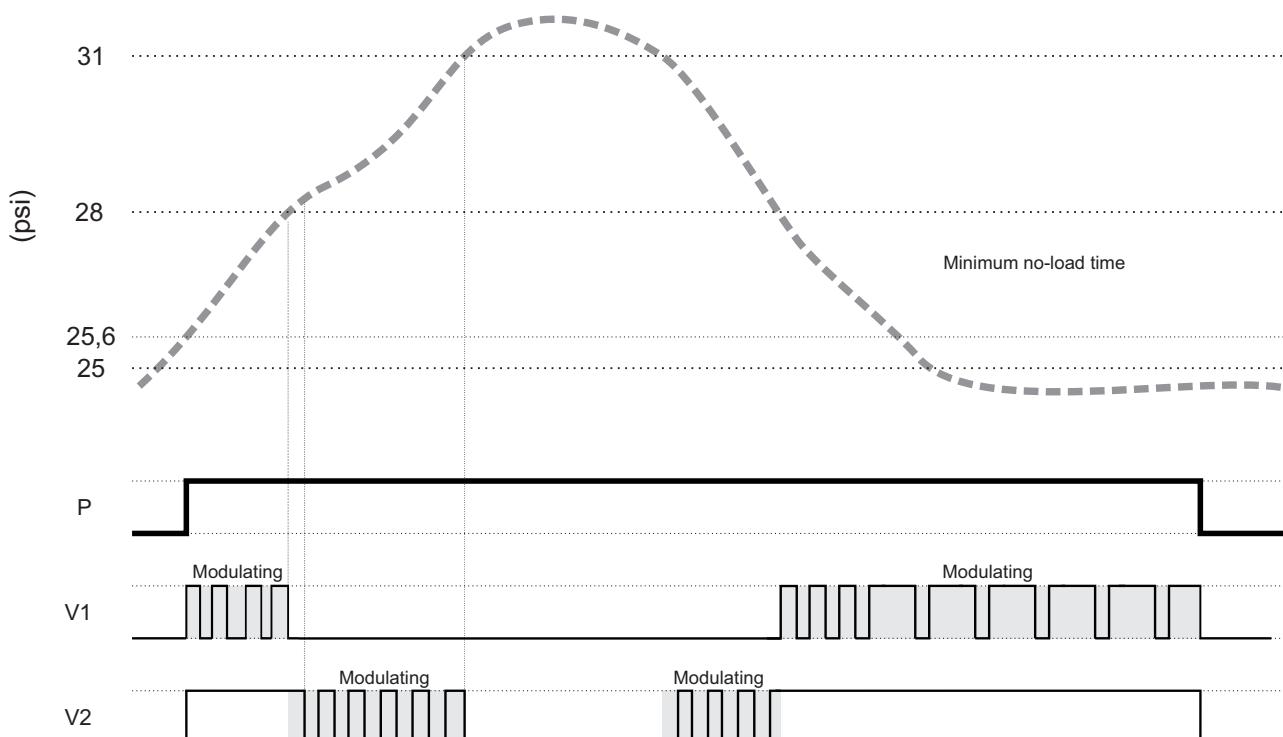

14.4.1.3 Linear mode connected to a VCC-Analog compressor:

The VCC-Analog is used to drive frequency inverters or modules to control compressors that receive a signal between 0-10V. The control uses the parameters of the setpoint value and the hysteresis of the VCC compressor. It is also possible to connect a digital input for the Start-stop output of the VCC compressor.

Example

1.2.x.1 Control mode:Linear
1.2.x.2 Setpoint: 25 psi
1.2.x.5 VCC hysteresis: 6 psi
1.2.x.9 Integral time: Off
1.2.x.15 Number of compressors: 1
1.2.x.22 Modulation of compressor 1: VCC-Analog
1.2.x.36 Compressor 1 analog output: A1

1.2.x.37 Compressor 1start-stop main output: O1
1.2.x.67 VCC:Starting time: 60s
1.2.x.68 VCC: Validation time: 0s
1.10.x.2 Minimum value of the analog output: 10%
1.10.x.3 Starting value of the analog output: 15%
1.10.x.4 Maximum value of the analog output: 100%


14.4.1.4 Linear mode connected to a VCC-Digital compressor.

The VCC-Digital is used to drive compressors with capacity modulation actuated by PWM solenoid valves. The control uses the parameters of the setpoint value and the hysteresis of the VCC compressor.

Example: Compressor with modulation in 2 valves with 50% capacity each.

1.2.x.1 Control mode:Linear
1.2.x.2 Setpoint: 25 psi
1.2.x.5 Hysteresis of the VCC compressor: 6 psi
1.2.x.15 Number of compressors: 1
1.2.x.22 Modulation of compressor 1: PWM 0|10...100 (2V)
1.2.x.37 Compressor 1 main output: O1

1.2.x.38 Compressor 1 auxiliary output 1: O2
1.2.x.39 Compressor 1 auxiliary output 2: O3
1.2.x.69 VCC-Digital: Minimum Capacity: 10%
1.2.x.70 VCC-Digital: Control period: Auto
1.2.x.71 VCC-Digital: Minimum valve actuation time: 5 sec
1.2.x.72 VCC-Digital: Maximum no-load time: 120 sec

14.4.2 Rotation Mode:

This mode operates in a similar way to the Linear Mode, however, making a time rotation to start and stop the compressor according to the recording of the hours in operation of each compressor. When the control recognizes the need to start a compressor, the preference is to start the compressor with the lowest number of hours of operation. Likewise, when it is necessary to shut down the compressor, the preference is to shut down the compressor that has a greater number of full hours on. The number of operating hours for each compressor can be viewed in the Control Menu, in the Hour meters option. In this same menu it is possible to reset one (select the compressor and press **SET**) or all (hold **SET** for 2 seconds) of the operation time records. As the compressor with VCC modulation is always the first to actuate and the last to shut down it does not enter the rotation, that is, the rotation is made only with compressors connected to digital outputs.

14.4.3 Dead zone mode:

This Control Mode is used to create a control region around the setpoint without starting and stopping compressors around the setpoint. The dead zone region is defined by the parameters Lower dead zone differential (1.2.x.7) and Upper dead zone differential (1.2.x.8).

Note: The use of Variable Capacity Compressors (VCC) is not allowed in this control mode.

Example:

1.2.x.1 Control mode: Dead zone
 1.2.x.2 Setpoint: 30psi
 1.2.x.4 Hysteresis of On/Off compressors: 12psi
 1.2.x.7 Lower dead zone differential: 10.0psi
 1.2.x.8 Upper dead zone differential: 15.0psi
 1.2.x.15 Number of compressors: 3

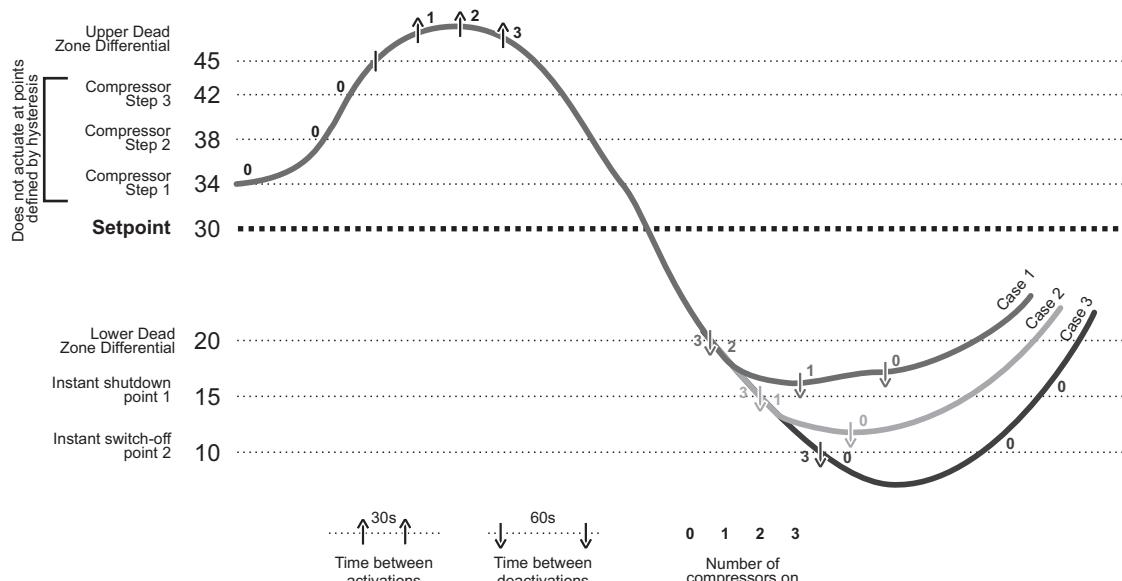
1.2.x.22 Compressor 1 modulation: On/Off
 1.2.x.23 Compressor 2 modulation: On/Off
 1.2.x.24 Compressor 3 modulation: On/Off
 1.2.x.61 Time between actuations: 30 seconds
 1.2.x.62 Time between shutdowns: 60 seconds

Actuation step = Hysteresis of digital outputs / Number of compressors = $12.0 / 3 = 4.0$ psi

Without considering the effect of the dead zone, the pressure values for the activation of compressors 1.2 and 3 should be, respectively, 34.0, 38.0 and 42.0psi.

Considering the effect of the dead zone, no compressor should be activated until the pressure exceeds 45.0 psi, so compressors 1 to 3 are only activated when the pressure exceeds this value and respecting the time between activations.

If the pressure decreases, entering the dead zone the compressors will remain activated until exceeding the Differential range of the lower dead zone. One compressor is deactivated immediately, and the others are gradually switched off respecting the time between shutdowns. If the pressure drops quickly across the instantaneous shutdown ranges, the compressor is shut down immediately. The step for instantaneous shutdown is defined according to:


Instantaneous shutdown step = Lower dead zone differential / (number of active stages - 1) = $10 / (3-1) = 5$

Compressor 3 is shutdown when crossing the lower limit, 20psi and compressors 1 and 2 are shut down as follows:

Case 1: If the pressure remains within the range of 20.0 and 15.0 psi. Compressor 2 shuts down 60 seconds after compressor 3 and compressor 1 shuts down 60 seconds after compressor 2.

Case 2: If the pressure drops rapidly to the range between 15.0 and 10.0 psi. Compressors 2 and 3 shut down immediately and compressor 1 is shut down 60 seconds later.

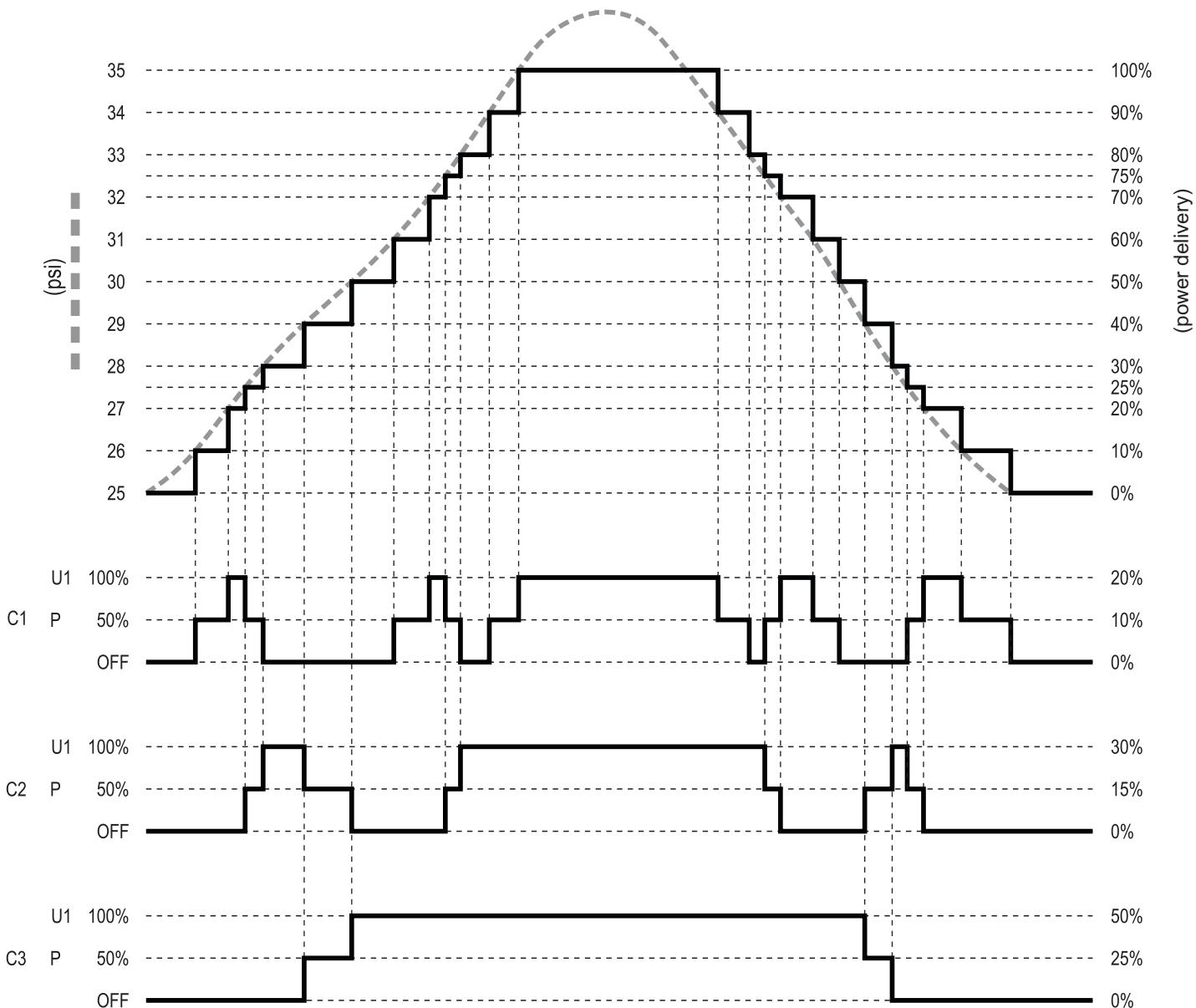
Case 3: If the pressure drops quickly below 10.0 psi, all compressors are switched off immediately.

14.4.4 Dead Zone Mode with rotation:

The Dead Zone Control Mode is applied together with the rotation, which is given preference to activate compressors with records of shorter time on and to shutdown compressors with records of longer time on.

Note: The use of Variable Capacity Compressors (VCC) is not allowed in this control mode.

14.SUCTION CONTROLS

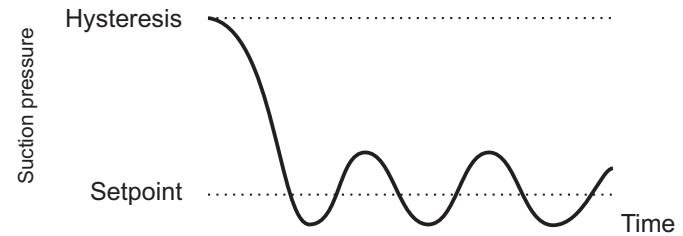
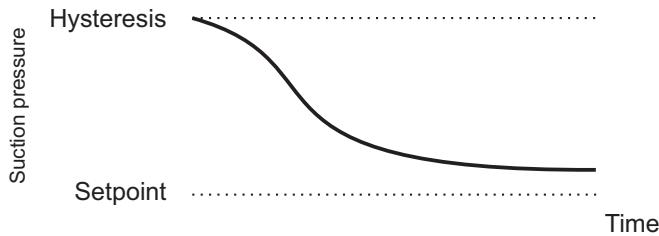

14.4.5 Progressive algorithm mode:

The Progressive Algorithm is an ideal control mode for systems that use compressors of different capacities for suction. The Progressive Algorithm considers the capacities of each compressor to supply the thermal demand of the system, seeking to optimize the use of unloader valves, minimizing the number of compressor starts and shutdowns. This mode can work with up to 6 compressors per suction line where one of them can be configured Variable Capacity Compressor (VCC). When compressor 1 is configured as VCC, it is the first to be activated and the last to be shut off. Progressive Algorithm Mode uses setpoint and a single hysteresis "AP control mode hysteresis".

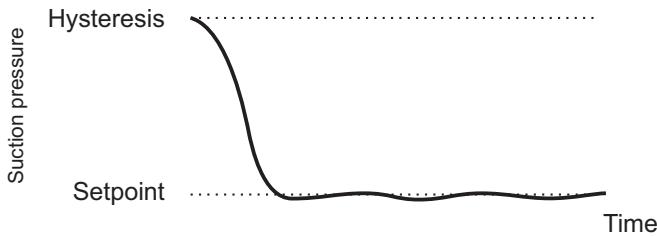
Application example:

1.2.x.1 Control mode: Progressive Algorithm
1.2.x.2 Setpoint: 25psi
1.2.x.6 AP Control Mode Hysteresis: 10psi
1.2.x.9 Integral time: Off
1.2.x.15 Number of compressors: 3
1.2.x.16 Compressor 1 capacity: 8Kw
1.2.x.17 Compressor 2 capacity: 12Kw

1.2.x.18 Compressor 3 capacity: 20Kw
1.2.x.22 Compressor 1 modulation: On/Off 50/100
1.2.x.23 Compressor 2 modulation: On/Off 50/100
1.2.x.24 Compressor 3 modulation: On/Off 50/100
1.2.x.28 Compressor 1 activation mode: Incremental
1.2.x.29 Compressor 2 activation mode: Incremental
1.2.x.30 Compressor 3 activation mode: Incremental

14.4.6 Integral action:


In some systems, the control of compressors with only proportional action (Setpoint and hysteresis) tends to present an error in steady state (not reaching the setpoint) or to show oscillatory behavior (excessive pressure variation around the setpoint and high number of compressor start). In these cases, the use of integral action together with proportional control has the objective of keeping the control pressure stable, converging to values close to the setpoint.

Application example:

Proportional-only control

Proportional + Integral Control

The integral action can be used in all control modes, including those that operate only on the On/Off outputs. To activate the integral action, simply set a value other than Off in the parameter Integral time (1 . 2 . x . 9).

The higher the configured value, the slower and more stable the system's behavior.

The lower the configured value, the faster and more oscillatory the behavior is.

Note: The definition of this parameter depends on the capacity of the system and the response speed of its pressure fluctuations. It is suggested to start the tests to define this parameter using the value of 330 seconds.

15.1 Control Modes

The Discharge Control Mode (1.3.x.1) defines the preference of fans actuation and shutdown. To control the discharge, the **RCK-862 plus** has the following control modes: Linear Mode, Rotation Mode, Dead Zone Mode, Dead Zone Mode with Rotation.

15.2 Types of discharge control

The discharge control can be carried out by monitoring the pressure or temperature variable. The type of control is adjusted according to the variable to be used in the parameter Type of control (1.3.x.2).

Pressure: When configuring the Control Type (1.3.x.2) for pressure, the **RCK-862 plus** uses the parameters related to pressure of 1.3.x.6 to 1.3.x.10. In this type of control, a temperature sensor (1.3.x.21) can also be added to monitor the condenser refrigerant outlet temperature (sub-cooling calculation).

Temperature: When configuring the Control type (1.3.x.2) for temperature, the **RCK-862 plus** uses the parameters related to temperature 1.3.x.11 to 1.3.x.18.

15.2.1 Linear Mode

15.2.1.1 Linear Mode linked only with digital fan outputs ON|OFF

Linear mode, when it only has digital outputs linked, controls the actuation and shutdown of each fan sequentially and with pressure / temperature intervals of the same magnitude (step).

The **RCK-862 plus** uses a setpoint value and pressure or temperature hysteresis (depending on the type of control) to control the discharge.

Actuation Pressure value of the "N" Output $\text{Actuation} = \text{Setpoint} + (N \times \text{Step})$

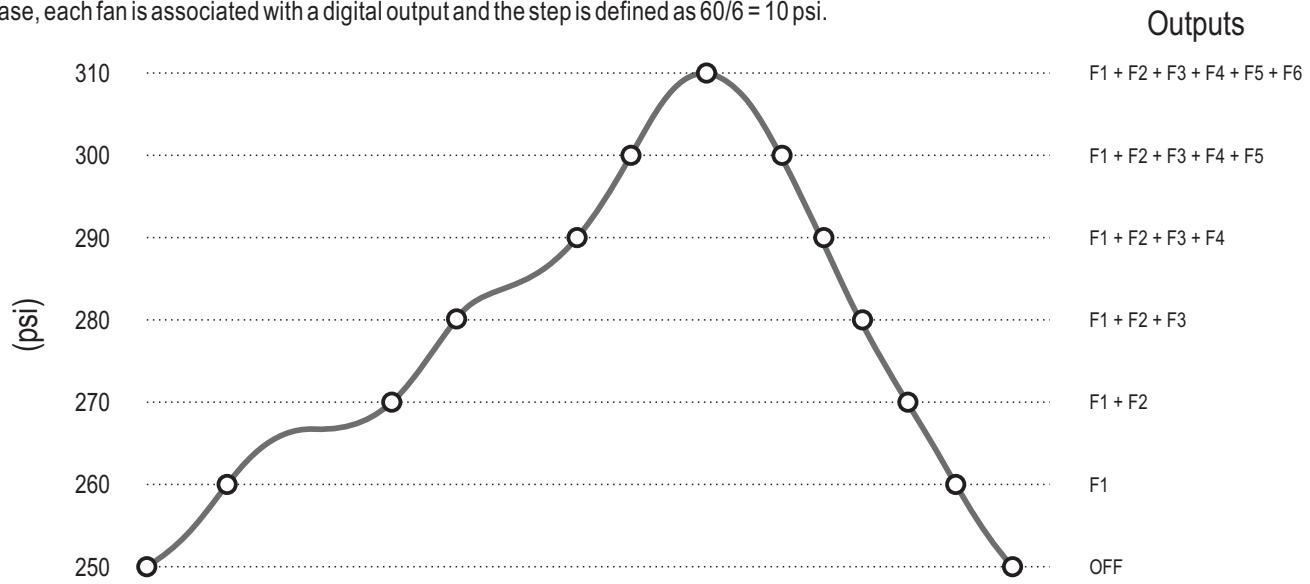
Shutdown Pressure value of the output "N" $\text{Actuation} = \text{Setpoint} + (N-1 \times \text{Step})$

Step for activating the outputs		Pressure value for output "N" actuation
Step =		Activation = Setpoint + (N x Step)
Digital hysteresis		Pressure value for output "N" deactivation
Number of outputs		Activation = Setpoint + (N-1 x Step)

Example:

1.3.x.1 Control mode: Linear

1.3.x.3 Setpoint: 250 psi


1.3.x.5 Hysteresis of digital outputs: 20

1.3.x.24 Number of fans: 6

1.3.x.25 Fan 1 modulation: without modulation

1.3.x.39 Integral Time: Off

In this case, each fan is associated with a digital output and the step is defined as $60/6 = 10$ psi.

15.2.1.2 Inverter-modulated fan:

The control of fans with frequency inverter uses an analog output (0-10V).

Only fan 01 of each discharge line can be configured as an inverter. During operation, the inverter-modulated fan is the first to be actuated and the last to be shutdown. Example: In item 1.3.x.25 o "Modulation of fan 01" as "Inverter" and select an analog output for the Inverter. You can select a digital output for the start/stop function by selecting a digital output in the parameter Fan Digital output (1.3.x.27).

The working values of the output (maximum, minimum and start) can be configured in the menu Analog outputs 1.10.

Integral actuation can be selected together with proportional (PI mode) using the parameter Integral Time (1.3.x.39).

Note: When more than one fan is controlled by only a single proportional output, the number of fans (1.3.x.24) is set to 1 and Compressor Modulation (1.3.x.25) as Inverter.

15.2.1.3 Linear mode using a fan (inverter) together with fans linked with digital outputs:

Fan 1 of each discharge line can be controlled proportionally and linked with a proportional 0-10V analog output for its control. To do this, select the modulation of fan 1 as an inverter and assign an analog output (1.3.x.26). The use of an output with Start-Stop function is optional and to configure it, just select a digital output for the fan in the parameter Fan 1 Digital output (1.3.x.27).

When the inverter fan works together with ON/OFF fans, the control is done through a setpoint value and two hysteresis. The hysteresis of the analog output (1.3.x.6) corresponds to the maximum value of the inverter compressor output and the hysteresis of the digital outputs (1.3.x.5) corresponds to all ON/OFF actuated.

The inverter fan is the first to be actuated and the last to be shutdown. The ON/OFF fans are actuated after the inverter fan reaches 100% of its speed. For each fan driven, the output of the Inverter compressor is reduced to compensate for the added portion. Similarly, when a fan is turned off, the value of the analog output increases to compensate for the portion that has been reduced.

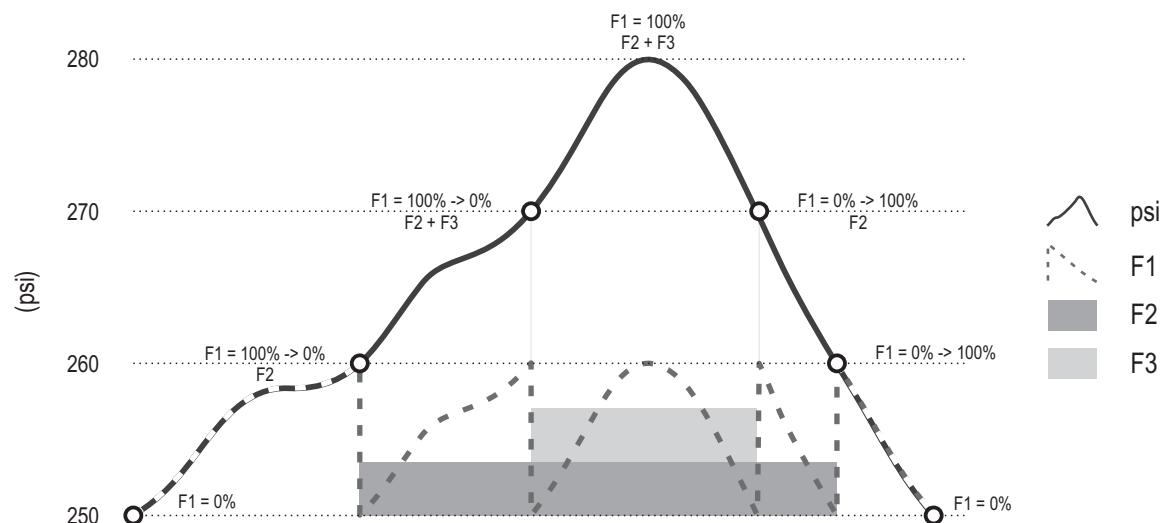
Example:

1.3.x.1 Control mode: Linear

1.3.x.6 Analog hysteresis: 10 psi

1.3.x.2 Control type: Pressure

1.3.x.24 Number of fans: 3


1.3.x.3 Setpoint: 250

1.3.x.25 Fan 1 modulation: without modulation

1.3.x.5 Hysteresis of digital outputs: 20

1.3.x.39 Integral time: Off

In this case, each fan is linked with a digital output and the step is defined as $20/2 = 10$ psi.

15.2.2 Rotation:

This mode operates in a similar way to the Linear Mode, however, making an hourly rotation to actuate and shutdown fans according to the record of the entire hours worked by each piece of equipment. When the control recognizes the need to start a fan, the preference will be given for the fan with the lowest number of entire work hours recorded. Likewise, when it is necessary to shut down a fan, the preference will be given to the one with highest number of work hours recorded.

The record of the number of hours worked by each fan is displayed in the control menu, in the Hour meter option. In this same menu it is possible to reset one (select the compressor and press) or all (hold for 2 seconds) the time records.

As a fan with Inverter modulation it is always the first to be actuated and the last to be shutdown it does not enter the rotation, that is, the rotation is made only with ON/OFF fans.

15.2.3 Dead Zone:

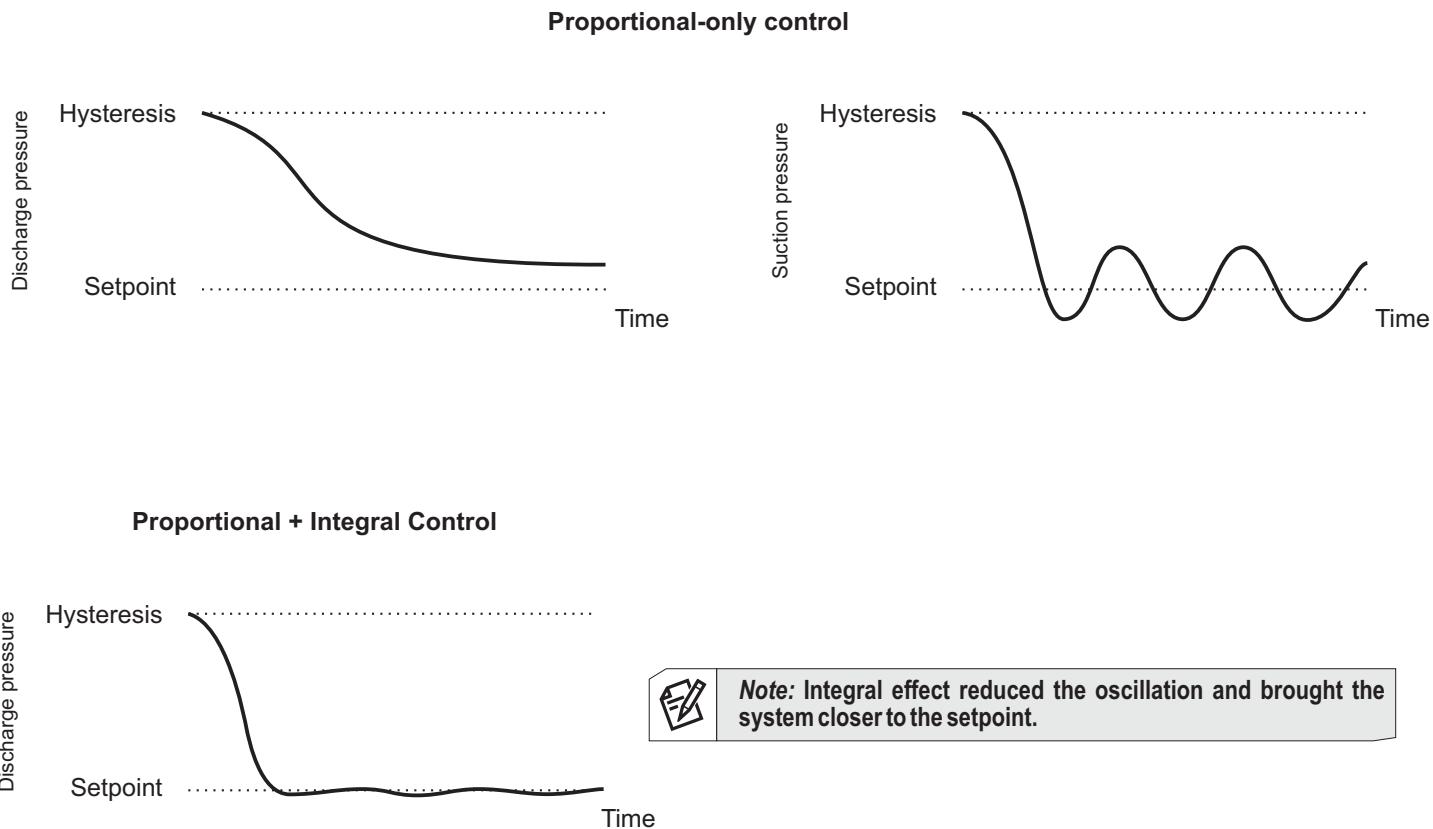
This Control Mode is used to create a control region around the setpoint without actuating and shutting down the fans. The operation for discharge pressure switches is like that for suction pressure switches.

Note: The use of proportional fans (inverter) is not allowed in this control mode.

15.2.4 Dead Zone + rotation:

This mode operates in a similar way to the Linear Mode, however, making an hourly rotation to actuate and shut down the fans according to the hours worked. When the control recognizes the need to start a fan, the preference will be given for the one with the lowest number of entire work hours recorded. Likewise, when it is necessary to shut down a fan, the preference will be given for the one with the highest number of entire work hours recorded.

The number of hours worked by each fan can be viewed in the control menu, in the Hour meter option. In this same menu it is possible to reset one (select the compressor and press) or all (hold for 2 seconds) time records.


As a fan with Inverter modulation, it is always the first to be actuated and the last to be shutdown, it does not enter the rotation, that is, the rotation is made only with fans without modulation.

Note: The use of proportional fans (inverter) is not allowed in this control mode.

15.2.5 Integral Action:

In some systems the control of fans with only proportional action (Setpoint and hysteresis) tends to present an error in steady state (not reaching the setpoint) or to show oscillatory behavior (excessive pressure variation around the setpoint and high number of fan activations). In these cases, the use of integral action together with proportional control has the objective of keeping the control pressure stable, converging to values close to the setpoint.

The integral action can be used in all control modes, including those that operate only on the ON/OFF outputs. To activate the integral action, simply set a value other than Off in the parameter Integral time (1.3.x.39). The higher the configured value, the slower and more stable the system's behavior. The lower the configured value, the faster and more oscillatory the behavior is.

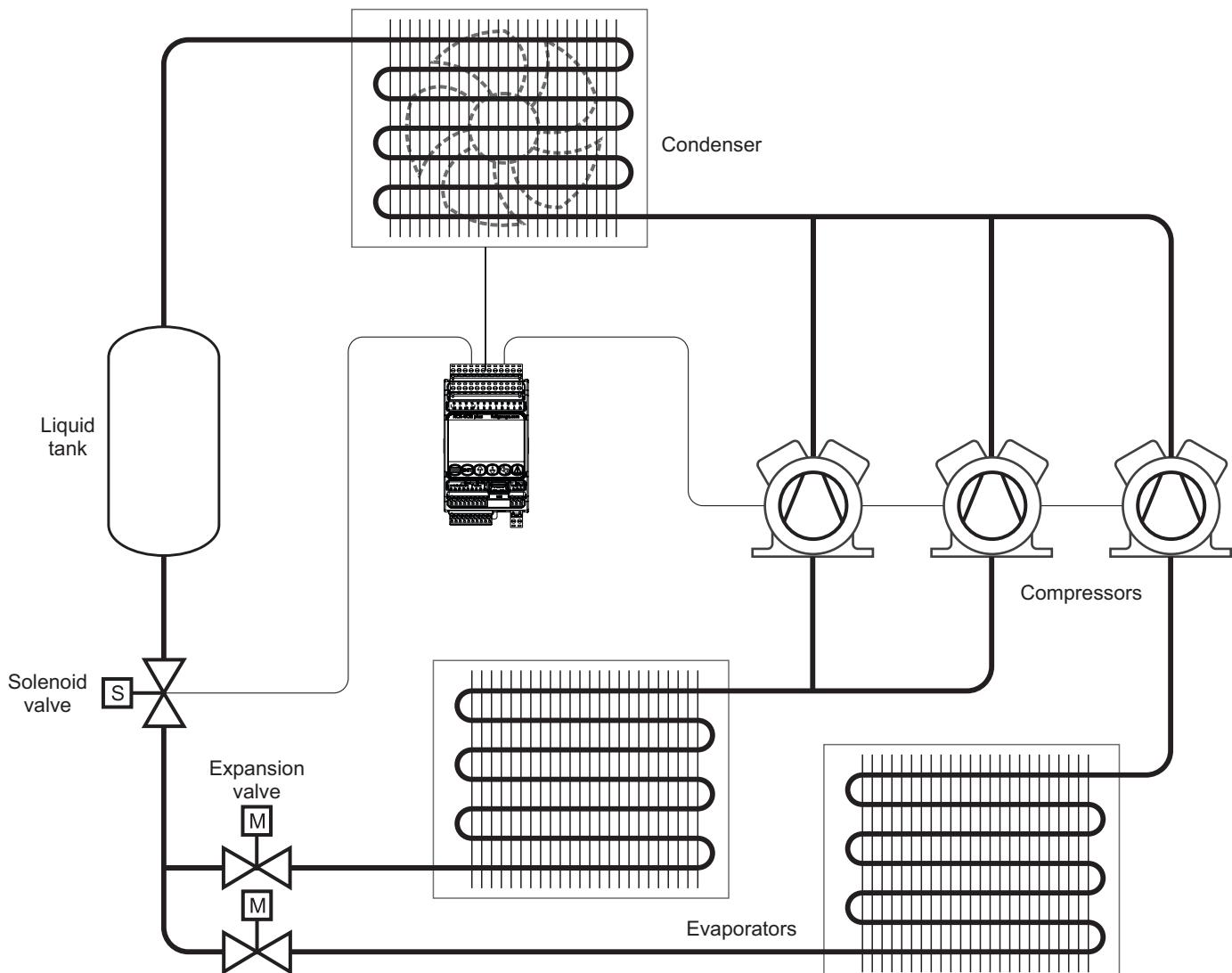
Note: The definition of this parameter depends on the capacity of the system and the response speed of its pressure fluctuations. It is suggested to start the tests to define these parameters using the value of 350 seconds.

16.AUXILIARY FUNCTIONS

The **RCK-862 plus** allows configuring some complementary functions to control the Rack system. The Pump Down and Compressor protection thermostat logic apply to suctions. The logic of adiabatic condensation and floating condensation apply to discharges and aims to adjust the Rack to work with less energy consumption. The individual pressure switch logics allow to control up to 3 pressure switches independently from the main control of the Rack.

The individual thermostat logic allows controlling the temperature individually or linked with a suction pressure switch, as well as perform defrost logics based on time.

The logic of rotating outputs allows you to cycle the actuation of outputs based on time. And the Control Status Logic allows to link a digital output to indicate the activate of the control.


16.1 Pump down:

Pump Down allows the cooling groups to be turned off with refrigerant collection. When Pump Down is activated, the control switches off the last compressor of each suction at a lower pressure setpoint than the operating pressure setpoint, thus reducing the amount of refrigerant stores in the suction lines. The control output used for the Pump Down process is optional and has the opposite behavior - during normal operation it remains active, and when the Pump Down is activated, the output is turned off. In this case a normally closed solenoid valve can be used to control the passage of the refrigerant. To configure Pump Down, access menu 1.7.1. The **RCK-862 plus** allows shutdown with Pump Down to be done manually or automatically.

Manual shutdown is done via the Control Menu - Pump Down. The moment the command to perform the recoil is sent, the outlet is turned off and the refrigerant flow is blocked. The last compressor of each suction line remains operating until the suction pressure reaches the value set in "Pump Down Setpoint" (1.7.1.x.2) or until the time configured in "Maximum Pump Down Time" (1.7.1.x.3). The output remains off until a new command is sent to exit the Pump Down condition.

The **automatic shut-off** is done on each suction line through a link with one or more thermostats. The thermostats are responsible for commanding the start of the shutdown by Pump Down and the return of the state of Pump Down releasing to actuate the compressors.

A link between an external thermostat and a suction line is made by configuring an auxiliary input with the Pump Down function in menu 1.6. To create a link between an internal thermostat "Individual Thermostat (1.7.6)" and a suction line, simply select the suction line in menu 1.7.6.x.7 if none of the linked thermostats has a demand for cooling, the Pump Down output is turned on and the system returns to normal operation. During the recoil process, low pressure and critical overheat, low and high alarms remain off.

16.AUXILIARY FUNCTIONS

Example:

Suction 1 operating with 2 compressors, 2 external thermostats and 1 individual thermostat:

Suction 1:

1.2.x.2 Pressure setpoint: 50,0 psi
1.2.x.4 On/Off compressor hysteresis: 10 psi
1.2.x.15 Number of compressors: 2
1.2.x.22 Modulation of compressor 1: On/Off
1.2.x.23 Modulation of compressor 2: On/Off
1.2.x.37 Compressor 1 main output: O1
1.2.x.38 Compressor 2 main output: O2

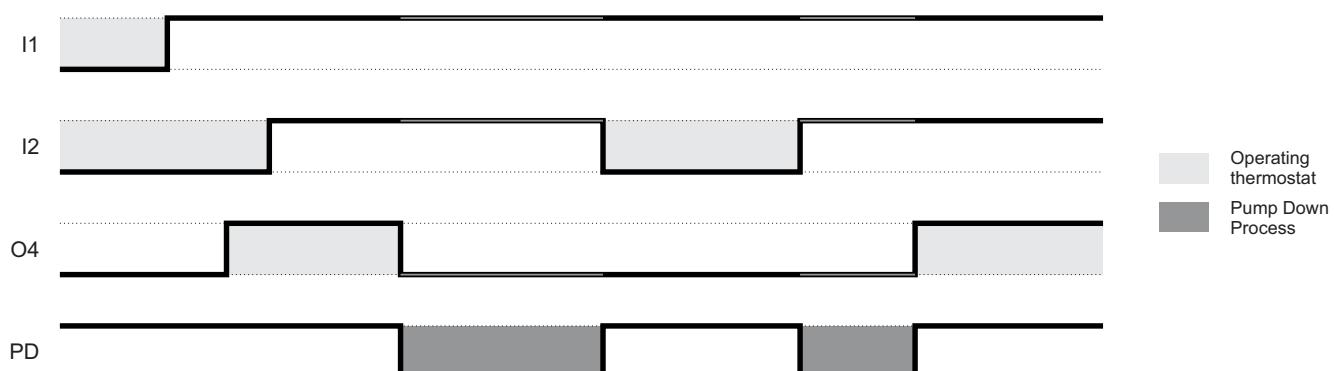
Pump Down for group 1:

1.7.x.1.1 Enables Pump Down: Yes
1.7.x.1.2 Pump Down Setpoint: 5.0 psi
1.7.x.1.3 Maximum time for Pump Down: 5 minutes
1.7.x.1.4 Digital Output: O3

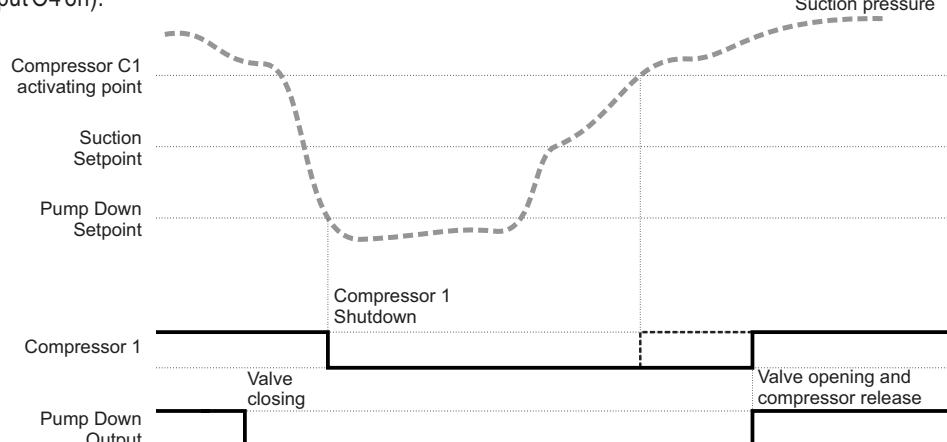
External thermostats (auxiliary inputs 1 and 2):

Input 1:

1.6.x.1 Pressure switch: Suction 1
1.6.x.2 Inputfunction: Activates Pump Down
1.6.x.4 Digital input address: I1


Input 2:

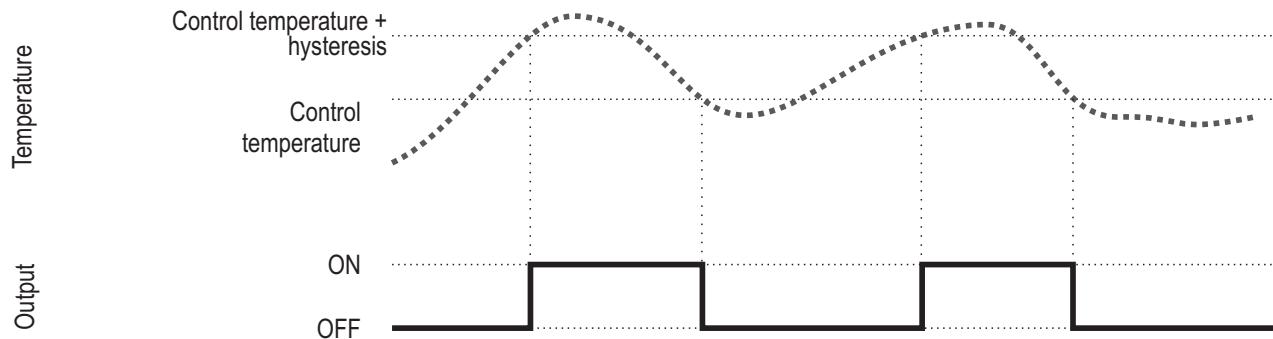
1.6.x.1 Pressure switch: Suction 1
1.6.x.2 Inputfunction: Activates Pump Down
1.6.x.4 Digital input address: I2


Individual Thermostat:

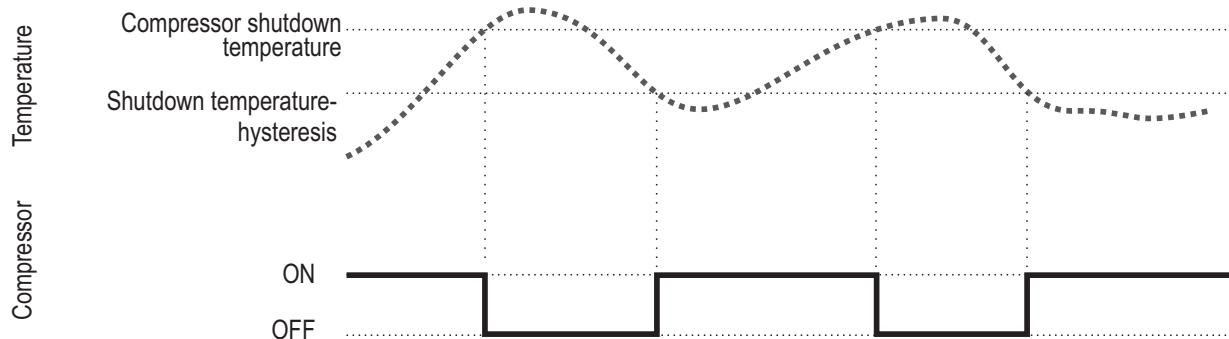
1.7.6.x.1 Operating mode: Cooling
1.7.6.x.2 Temperature setpoint: 5°C
1.7.6.x.7 Linked pressure switch: Suction 1
1.7.6.x.9 Main output: O4

In this example, the Suction 1 control enters the Pump Down process if digital inputs I1 and I2 are actuated and Output O4 is off. (External thermostats requesting Pump Down and Internal thermostat below the setpoint).

After the last compressor has been switched off, the compressor operation remains blocked until any of the thermostats is in demand for refrigeration. (Inputs I1 or I2 off or Output O4 on).



16.AUXILIARY FUNCTIONS


16.2 Compressor protection thermostats:

A protection thermostat can be configured for each of the 6 compressors on the 3 suction lines. Each thermostat has a sensor for measuring the compressor temperature, a digital output for activating a cooling device and a shutdown alarm. The output is activated, and the high temperature alarm only occurs when the compressor is on.

The output is activated if the sensor temperature is higher than the control temperature value (1.7.2.**.1) + hysteresis (1.7.2.**.3) and the output is switched off if the temperature value is lower than the value of the control temperature.

In the Compressor protection thermostats function, a maximum temperature for compressor operation can be defined. If the compressor temperature exceeds the value of Compressor shutdown temperature (1.7.2.**.2), the compressor will shut down and an alarm event will be created. The compressor returns to operation when the thermostat temperature sensor is below the shutdown temperature minus hysteresis.

16.3 Adiabatic condensation:

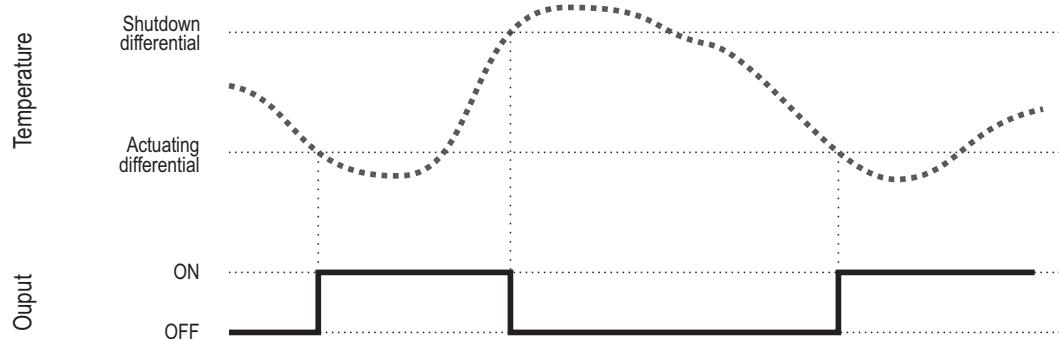
Using the adiabatic condensation logic, it is possible to reduce the temperature of the external air in contact with the condenser and, consequently, reduce the operating pressure of the discharge. The control of adiabatic condensation activates a water pump or a valve that feeds the water curtain through which the external air passes before reaching the condenser. The activation of the output is done by temperature control, using one or two sensors, or exclusively by time acting by means of a cycle timer (time on and time off). The control is permanently active if its Control Mode (1.7.3.**.1) is not determined using the Start time (1.7.3.1.13) and End time (1.7.3.1.14) or associated with a digital input.

16.3.1 Temperature control:

In the Temperature control mode, a sensor must be installed to measure the temperature of the external air (dry bulb sensor) and optionally another sensor to measure the air temperature after passing through the water curtain (wet bulb sensor). The Control Mode (1.7.3.**.1) can be configured as Temperature with a cycle timer and in this case the output cycles between on and off instead of remaining on, whenever the temperature activation condition presents the activation condition. The cycle period must be configured in the parameters Time on (1.7.3.**.9) and Time off (1.7.3.**.10).

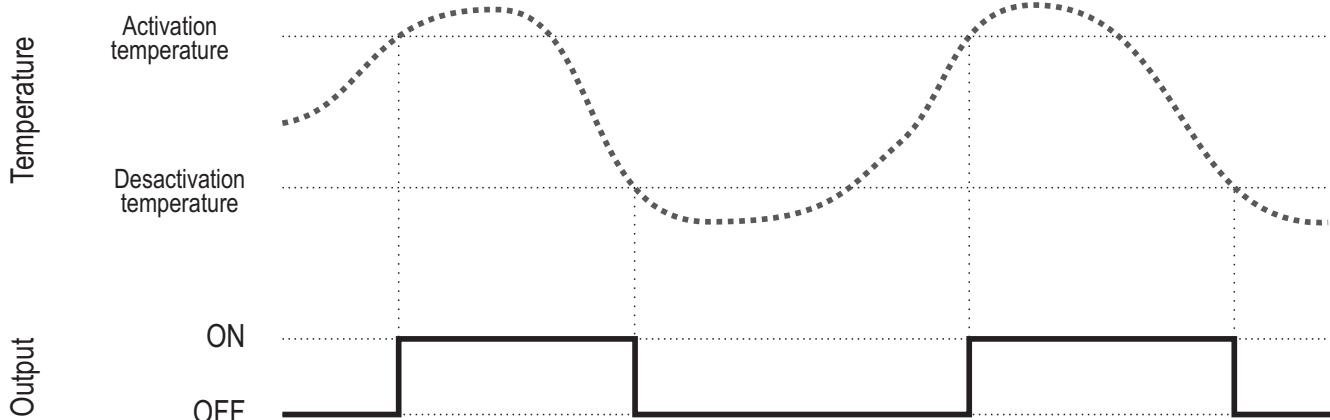
If the parameters Temperature for actuation and / or Temperature for shutdown are set to OFF, the control is performed only by differential, using the two sensors.

If the parameters Differential for actuation and / or Differential for shutdown are set to OFF, the control is performed only by temperature, using only the dry bulb sensor.


If the Control Mode (1.7.3.**.1) is configured as Temperature with a cycle timer, the output will be cycling instead of being permanently activated, whenever the temperature activation condition presents the activation condition.

The cycle period must be configured in the parameters Time on (1.7.3.**.9) and Time off (1.7.3.**.10).

16.AUXILIARY FUNCTIONS


16.3.1.1 Temperature control using two sensors (Differential TBS-TBU)

The control output is activated whenever the differential between the readings of the two sensors is lower than the Activation differential (1.7.3.x.4) and will be shut off when the differential is greater than the Shutdown differential (1.7.3.x.5). In this case it is necessary to use two sensors, one for dry bulb temperature (1.3.x.23) and the other for wet bulb temperature (1.7.3.x.9). Temperature differential control will only be enabled when the external temperature (TBS) is higher than the value set in the parameter Minimum operating temperature (1.7.3.x.6). If the shutdown differential is not reached within the time interval configured in Differential validation time (1.7.3.x.7) the output will be switched off and will remain blocked until the time for the next attempt has elapsed (1.7.3.x.8). For the control to be carried out using the two sensors, the parameters Temperature for activation (1.7.3.x.2) and Temperature for shutdown (1.7.3.x.3) must be set to OFF.

16.3.1.2 Temperature control using a sensor (TBS)

In this mode, only a temperature sensor is used to measure the air temperature in the environment where the condenser is located. If the Temperature value for activation (1.7.3.x.1) is reached, the control output is activated until it returns to the Temperature for shutdown (1.7.3.x.2).



16.3.1.3 Temperature control using two sensors (TBS-TBU Differential and Temperature Limit)

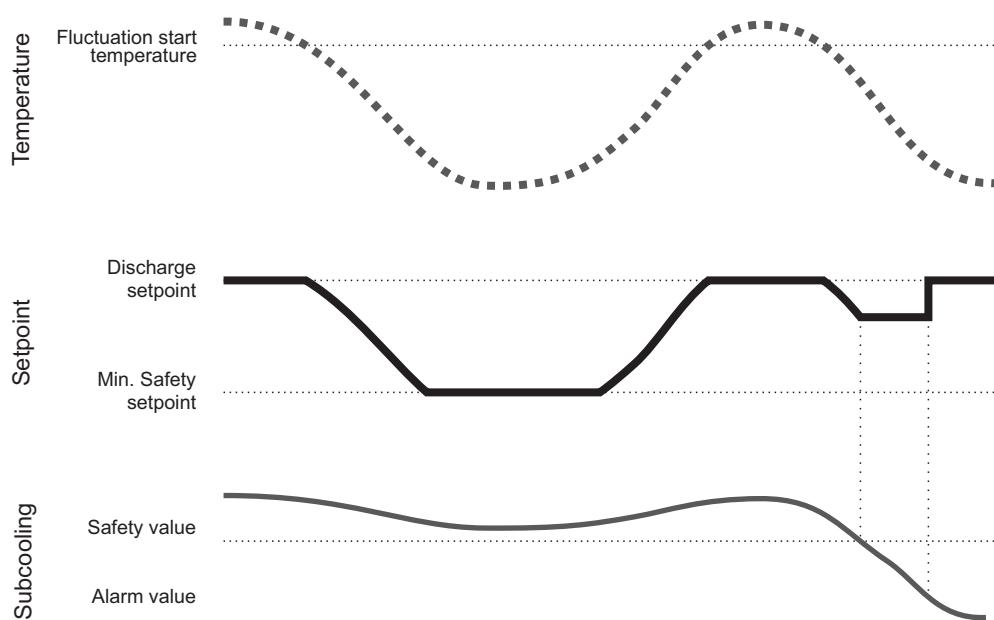
When the four parameters: Temperature for activation (1.7.3.x.2), Temperature for shutdown (1.7.3.x.3), Differential for activation (1.7.3.x.4) and Differential for shutdown (1.7.3.x.5), the control is done by both modes (temperature differential and temperature limits). Whenever at least one of the two modes have an actuation condition, the **RCK-862_{plus}** activates the control output of the adiabatic condensation. In this case, the output will be activated when the temperature of the dry bulb sensor exceeds the Temperature for activation and will be shut down when the temperature is lower than the Temperature for shutdown; or the output will be actuated when the differential is less than the Differential for activation and will be shut down when the differential is greater than the Differential for shut down.

16.3.2 Cycle timer mode:

The control of adiabatic condensation is performed exclusively by cycling the Time On (1.7.3.x.9) and the Time Off (1.7.3.x.9). The digital output (1.7.3.x.8) linked with the water control switches its operation from on to off according to the time parameters. In this case, it is suggested to limit the period of operation of the adiabatic condensation by the parameters Start Time (1.7.3.1.11) and End Time (1.7.3.1.12).

16.4 Floating condensation:

The floating condensation logic can be used to lower the compressor discharge pressure and consequently reduce the compressor's energy consumption according to the air temperature value. To use the logic, a pressure sensor must be configured for the discharge, a temperature sensor for measuring the external temperature and a temperature sensor for calculating the subcooling.


In the Floating condensation menu (1.7.4) you can access the essential parameters for the logic to work, such as the Temperature to start the fluctuation (1.7.4.x.1), the minimum safety setpoint (1.7.4.x.2) and safety subcooling value (1.7.4.x.3).

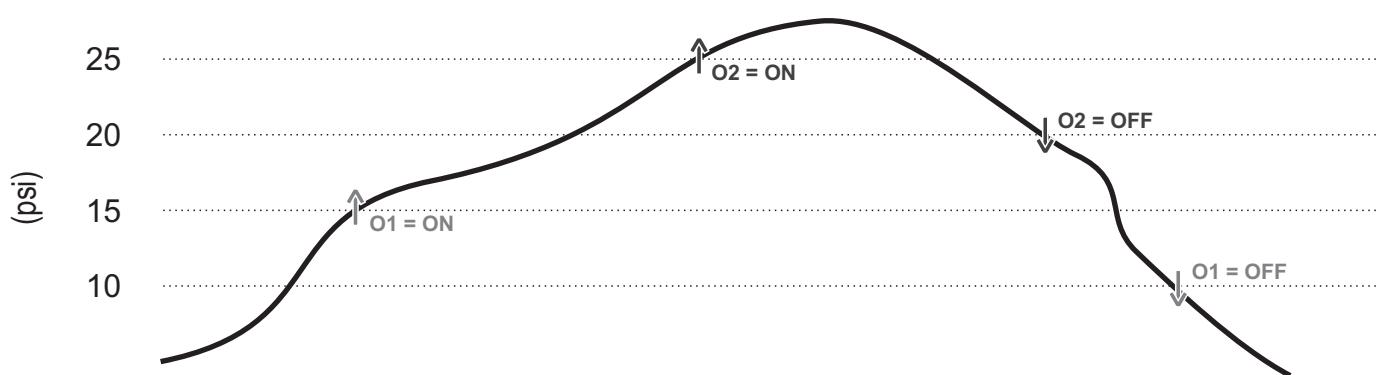
This logic can be programmed to work only in a complying time interval (1.7.4.x.4 and 1.7.4.x.5) or by means of the command of an auxiliary input (1.6.x.2).

When enabled, the logic goes into operation as soon as the temperature of the sensor that is measuring the external temperature is lower than the value of the parameter Fluctuation start temperature (1.7.4.x.1). In this case, the discharge setpoint decreases proportionally as the external temperature decreases, following the ratio of 1 to 1 degree until the maximum pressure variation. The controller uses the saturation data of the refrigerant configured for the group belonging to the discharge pressure switch to perform the conversion of pressure to temperature.

Throughout the fluctuation if the calculated subcooling is equal to or better than the safety subcooling parameter (1.7.4.x.3), the control limits the reduction of the discharge setpoint to the moment value. If the subcooling value rises by 1°C, then the floating condensation control returns to reducing the discharge setpoint.

If at any time the subcooling decreases to the low subcooling alarm value, the logic is disabled and the discharge setpoint returns to the original value.

16.5 Individual pressure switches:


The **RCK-862 plus** allows configuring up to 3 individual pressure switches disconnected from the Rack's main control. On each pressure switch, it is possible to associate a pressure sensor and up to 6 digital outputs with setpoint and independent hysteresis.

Each pressure switch can be configured to work in compression or decompression mode. In compression mode, the output is activated if the pressure value is lower than the (setpoint-hysteresis) and shuts off if the pressure value is higher than the setpoint. In the decompression mode, the output is activated if the pressure value is greater than (setpoint+hysteresis) and shuts off if the pressure value is lower than the setpoint.

Example:

1.7.5.x Individual pressure switch 1: with two outlets
 1.7.5.x.1 Operating mode: Decompression
 1.7.5.x.2 Pressure setpoint 1: 10,0 PSI
 1.7.5.x.3 Pressure setpoint 2: 20,0 PSI
 1.7.5.x.8 Pressure hysteresis 1: 5,0 PSI

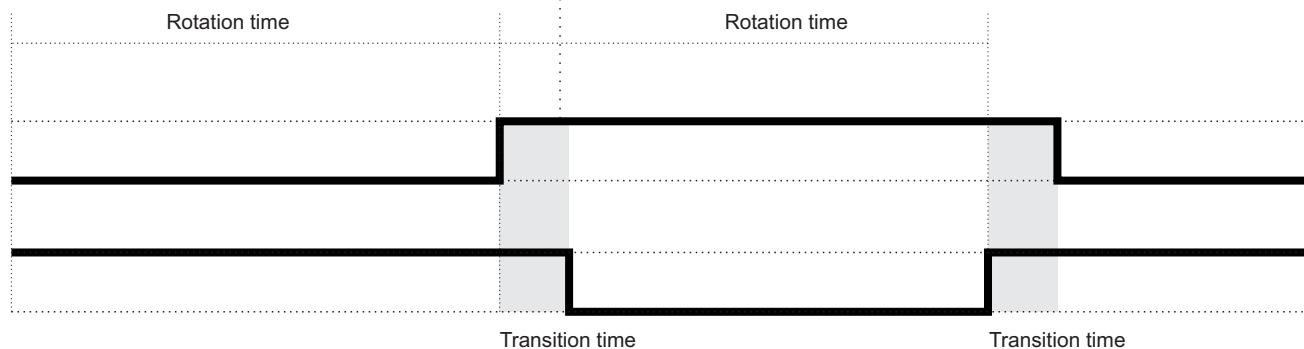
1.7.5.x.9 Pressure hysteresis: 5,0 PSI
 1.7.5.x.14 Pressure sensor: S1
 1.7.5.x.15 Digital output address 1: O1
 1.7.5.x.16 Digital output address 2: O2

16.6 Individual thermostats:

The **RCK-862 plus** allows you to configure up to 6 individual thermostats unrelated to the Rack's main control. Each thermostat can be configured to work in heating or cooling mode. In heating mode, the output is activated if the temperature value is lower than the (setpoint-hysteresis) and shuts off if the temperature value is higher than the setpoint. In cooling mode, the output is activated if the temperature value is higher than (setpoint + hysteresis) and turns off if the temperature value is lower than the setpoint.

Each thermostat has a defrost function, where you can determine a fixed interval between defrosts or select up to 6 independent times to start defrosting. During defrost, the main output of the thermostat is shut off and the defrost output is activated until the time of Defrost duration (1 . 7 . 6 . x . 15) has elapsed. The use of the defrost outlet is optional.

It is possible to synchronize the operation of one or more thermostats with a suction pressure switch. This feature causes the suction pressure switch is linked to the thermostat in the parameter linked Pressure switch (1 . 7 . 6 . x . 7). The pressure switch will only enter Pump Down when all thermostats connected to that suction are shut off.


16.7 Outputs with rotation:

The **RCK-862 plus** allows you to configure up to 3 sets of outputs with a rotation function, for controlling pumps, for example.

In each set, it is possible to configure two digital outputs that operate alternately respecting the Time for rotation of the outputs (1 . 7 . 7 . x . 1) and the transition time (1 . 7 . 7 . x . 2), which is the time that the two outputs remain on before making the change.

To configure a lack of flow digital input, the corresponding set of outputs must be selected in the menu (1 . 6 . x . 1) and the input function (1 . 6 . x . 2) as Safety 1 for pump 1 flow sensor, Safety 2 for pump 2 flow sensor or Safety 3 for common flow sensor for both pumps.

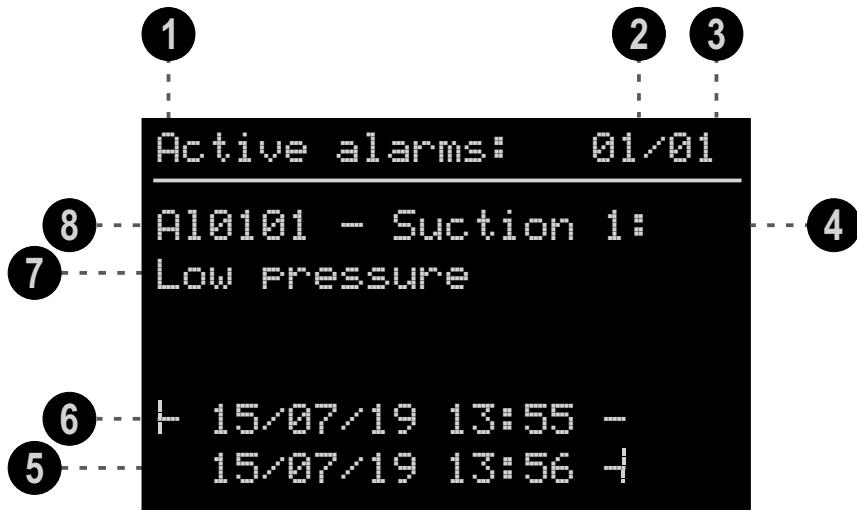
Outlet sets 1, 2 and 3 operate with suction 1, 2 and 3, respectively. The compressors come into operation only after the start of one of the pumps and are switched off in the event of a lack of flow alarm in both pumps.

16.8 Control Status:

It allows configuring a digital output for indicating the operation of the controller. This output is only switched off in the event of a power failure and when the control functions are switched off (Control Menu → Control Status = Off).

17. ALARMS

The **RCK-862 plus** controller has an alarm system in which it is possible to configure protection or display-only alarms. All alarm settings are linked to the suction and discharge pressure switches. In the event of an alarm, an audible warning will sound and remain active until one of the following conditions occurs:


- The alarm condition no longer occurs, and the alarm is not in a manual reset condition.
- A manual reset was performed (Control Menu).
- The audible warning has been inhibited (by pressing the alarm key for 5 seconds).

If the audible warning function is not desired, it can be disabled in menu 2.4.

17.1 Viewing alarms

One touch on the key displays active Alarms, a second touch displays alarms on reset and a third touch displays the Alarm History screen. Up to 99 records are stored in each of these three lists, and you can navigate between the records using the keys and . When the list is complete, new alarms overwrite older alarm records.

Each alarm record has information about the reason for the alarm, which pressure switch the occurrence was on, start time and time the event stopped. To delete the alarm records, it is necessary to be viewing the **alarm history** list, press and hold the key for 3 seconds and confirm the request.

1 – Alarm is displayed:

Active alarms: Alarms that are active, in alarm condition

Resets: Alarms that are no longer active but are preventing the operation of a pressure switch. These alarms are in automatic or manual reset condition

Alarm history: Records all alarms that are no longer active or in reset condition

2 – Record number of the list being displayed.
Record 1 is always the most recent

3 – Number of records in each alarm list

4 – Pressure switch where the alarm occurred

5 – Time the alarm stopped occurring

If the alarm exit time is marked (*), it means that the controller was de-energized while the alarms were active, and it is not possible to determine the exact time when the alarm stopped occurring. In this case, the time when the controller was energized after this occurrence is displayed

6 – Alarm start time

7 – Reason for alarm

8 – Alarm identifier code. See alarm table

17.2 Automatic resets:

It is possible to configure automatic resets for protection alarms. In the reset menu (1 . 4 . 4) it is possible to configure the Number of reset attempts (1 . 4 . 4 . 1), the intervals between attempts and a period within which attempts will be made.

If the number of attempts is set to the minimum "Off" value, the reset must be manual only. If the maximum value "Always" is set, the **RCK-862 plus** does not limit the number of reset attempts, it only respects the times.

If the value is set between 1 and 10, this number of attempts will be made within the configured reset period (1 . 4 . 4 . 3) and after this number of attempts, a manual reset should be made.

With each occurrence of protection alarms, it will be checked how many alarms of the same type occurred within the configured period. If it is higher than the configured value, the pressure switch will be blocked in alarm condition and a manual reset via Sitrad or via the interface in the control menu option Reset will be necessary.

If the reset period has elapsed and the number of configured attempts has not occurred, the attempt counter will be reset.

Attention: As a factory default, the suction and discharge alarms are disabled and for their use it is necessary to configure an appropriate limit depending on the application.

Number of attempts = 3

Example 1: Retry interval = 5 minutes

Reset period = 1 hour

In the event of a protection alarm, it will be checked if 3 other alarms of the same type have occurred within the last hour, if so, the pressure switch will be blocked, if not, it will be reset after 5 minutes.

Number of attempts = always

Example 2: Retry interval = 5 minutes

Reset period = 1 hour

In the event of a protection alarm, the pressure switch will be reset after 5 minutes without limit of attempts and the setting of the reset period is indifferent.

17.3 Output signaling

It is possible to configure up to 6 digital alarm outputs through menu 1 . 4 . 5. Each output, when configured, will actuate together with the visual alarm. The activation mode of this alarm output can be switched on or cycling.

Example: Configuring an output through the menu 1.4.5.1.

Pressure switch: Suction 1

Output function: Low pressure

Time on: 5 seconds

Time off: 5 seconds

Digital output = O5 (digital output 5)

In the event of an alarm for suction pressure switch 1, digital output 5 will cycle with Ton and Toff = 5 seconds.

And it will be turned off after leaving the alarm condition, or after the reset.

Example: Configuring an output via the menu 1.4.5.2.

Pressure switch: Suction 1

Output function: Low pressure

Time on: 0 seconds

Time off: 0 seconds

Digital output = O6 (digital output 6)

In the event of a low-pressure alarm on suction 1, output 6 will be activated until manual or automatic reset is carried out.

17. ALARMS

17.4 Alarm tables

17.4.1 System alarms

Alarm	Description	Effect
AL0001	Clock not set	Indicative alarm
AL0002	PPP	Blocking control functions (Resetting controller parameters)
AL0003	Manual reset record	Indicative alarm
AL0004	ECAL	Blocking control functions (Contact Full Gauge Controls)

17.4.2 Suction alarms: The **RCK-862 plus** can control up to 3 suction pressure switches. The address of each pressure switch in the alarm nomenclature is represented by the letter "x". Where "x" can be 1, 2 or 3 and represents suction pressure switches 1, 2 or 3, respectively.

Alarm	Description	Effect
AL0x01	Low pressure	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdowns
AL0x02	High pressure	Indicative alarm
AL0x03	Critical overheating	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdowns
AL0x04	Low overheating	Indicative alarm
AL0x05	High overheating	Indicative alarm
AL0x06	Main pressure sensor fault	Actuates according to the configuration of menu 1.5
AL0x07	Backup pressure sensor fault	Actuates according to the configuration of menu 1.5
AL0x08	Temperature sensor fault	Shuts off overheating alarms
AL0x09	Sensor fault	Shuts off the compressor temperature control output
AL0x10	Compressor safety input 1	Shuts off compressor 1
AL0x11	Compressor safety input 2	Shuts off compressor 2
AL0x12	Compressor safety input 3	Shuts off compressor 3
AL0x13	Compressor safety input 4	Shuts off compressor 4
AL0x14	Compressor safety input 5	Shuts off compressor 5
AL0x15	Compressor safety input 6	Shuts off compressor 6
AL0x16	Low pressure digital input	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdowns
AL0x17	High pressure digital input	Indicative alarm
AL0x18	Compressor 1 maintenance time	Indicative alarm
AL0x19	Compressor 2 maintenance time	Indicative alarm
AL0x20	Compressor 3 maintenance time	Indicative alarm
AL0x21	Compressor 4 maintenance time	Indicative alarm
AL0x22	Compressor 5 maintenance time	Indicative alarm
AL0x23	Compressor 6 maintenance time	Indicative alarm
AL0x24	High temperature in compressor 1	Shuts off the compressor
AL0x25	High temperature in compressor 2	Shuts off the compressor
AL0x26	High temperature in compressor 3	Shuts off the compressor
AL0x27	High temperature in compressor 4	Shuts off the compressor
AL0x28	High temperature in compressor 5	Shuts off the compressor
AL0x29	High temperature in compressor 6	Shuts off the compressor
AL0x30	External alarm 1	Indicative alarm
AL0x31	External alarm 2	Indicative alarm
AL0x32	External alarm 3	Indicative alarm
AL0x33	External alarm 4	Indicative alarm

17. ALARMS

Alarm	Description	Effect
AL0x34	External alarm 5	Indicative alarm
AL0x35	External alarm 6	Indicative alarm
AL0x36	External alarm 7	Indicative alarm
AL0x37	External alarm 8	Indicative alarm
AL0x38	External alarm 9	Indicative alarm
AL0x39	External alarm 10	Indicative alarm
AL0x40	External fault 1	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x41	External fault 2	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x42	External fault 3	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x43	External fault 4	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x44	External fault 5	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x45	External fault 6	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x46	External fault 7	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x47	External fault 8	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x48	External fault 9	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown
AL0x49	External fault 10	Disconnect all compressors from the suction pressure switch. Ignores the time between shutdown

17.4.3 Discharge alarms: The **RCK-862 plus** can control up to 3 discharge pressure switches. The address of each pressure switch in the alarm nomenclature is represented by the letter "x". Where "x" can be 4, 5 or 6 and represents discharge pressure switches 1,2 or 3, respectively.

Example: AL0x01

- 4 - Referring to Discharge 1
- 5 - Referring to Discharge 2
- 6 - Referring to Discharge 3

Alarm	Description	Effect
AL0x01	Low pressure	Shut off all fans on the discharge pressure switch. Ignores the time between deactivations.
AL0x02	High pressure	Shuts off all compressors from the suction pressure switches in the same group. Respects the time between shutdowns.
AL0x03	Critical high pressure	Shuts off all compressors from the suction pressure switches in the same group. Ignores the time between shutdowns.
AL0x04	Low temperature	Shuts off all fans on the discharge pressure switch. Ignore the time between shutdowns
AL0x05	High temperature	Shuts off all compressors from the suction pressure switches in the same group. Respects the time between shutdowns
AL0x06	Critical high temperature	Shuts off all compressors from the suction pressure switches in the same group. Respects the time between shutdowns
AL0x07	Low subcooling	Shuts off the fans respecting the time between shutdowns
AL0x08	High subcooling	Indicative alarm
AL0x09	Main pressure sensor fault	Actuates according to the configuration of menu 1.5
AL0x10	Backup pressure sensor fault	Actuates according to the configuration of menu 1.5
AL0x11	Main temperature sensor fault	Actuates according to the configuration of menu 1.5

17. ALARMS

Alarm	Description	Effect
AL0x12	Backup temperature sensor fault	Actuates according to the configuration of menu 1.5
AL0x13	External temperature sensor / dry bulb fault	Actuates according to the configuration of menu 1.5 Floating and adiabatic condensation logic will be disabled
AL0x14	Wet bulb temperature sensor fault	Actuates according to the configuration of menu 1.5 Differential temperature control is disabled in the adiabatic condensation logic
AL0x15	Fan safety input 1	Shut off fan 1
AL0x16	Fan safety input 2	Shut off fan 2
AL0x17	Fan safety input 3	Shut off fan 3
AL0x18	Fan safety input 4	Shut off fan 4
	Fan safety input 5	Shut off fan 5
AL0x20	Fan safety input 6	Shut off fan 6
AL0x21	Low pressure digital input	Shut off all fans on the discharge pressure switch. Ignores the time between shutdowns
AL0x22	High pressure digital input	Turns off all compressors on suction pressure switch. Ignores the time between deactivations.
AL0x23	Maintenance time for fan 1	Indicative alarm
AL0x24	Maintenance time for fan 2	Indicative alarm
AL0x25	Maintenance time for fan 3	Indicative alarm
AL0x26	Maintenance time for fan 4	Indicative alarm
AL0x27	Maintenance time for fan 5	Indicative alarm
AL0x28	Maintenance time for fan 6	Indicative alarm
AL0x29	Adiabatic condensation validation time	Shut off the adiabatic condensation outlet. This alarm remains active for 1 minute
AL0x30	External alarm 1	Indicative alarm
AL0x31	External alarm 2	Indicative alarm
AL0x32	External alarm 3	Indicative alarm
AL0x33	External alarm 4	Indicative alarm
AL0x34	External alarm 5	Indicative alarm
AL0x35	External alarm 6	Indicative alarm
AL0x36	External alarm 7	Indicative alarm
AL0x37	External alarm 8	Indicative alarm
AL0x38	External alarm 9	Indicative alarm
AL0x39	External alarm 10	Indicative alarm
AL0x40	External fault 1	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x41	External fault 2	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x42	External fault 3	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x43	External fault 4	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x44	External fault 5	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x45	External fault 6	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x46	External fault 7	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x47	External fault 8	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x48	External fault 9	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns
AL0x49	External fault 10	Shut off all fan on the discharge pressure switch. Ignores the time between shutdowns

17. ALARMS

17.4.4 Individual pressure switch alarms: The **RCK-862 plus** can control up to 3 individual pressure switches. The address of each pressure switch in the alarm nomenclature is represented by the letter "x". Where "x" can be 7, 8 or 9 and represents, respectively, the individual pressure switches 1, 2 or 3.

Example: AL0x01

- 7 - Referring to individual pressure switch 1
- 8 - Referring to individual pressure switch 2
- 9 - Referring to individual pressure switch 3

Alarm	Description	Effect
AL0x01	Low pressure	Indicative alarm
AL0x02	High pressure	Indicative alarm
AL0x03	Pressure sensor fault	Shuts off all outputs ignores the time between shutdowns

17.4.5 Individual thermostat alarms: The **RCK-862 plus** can control up to 6 individual thermostats. The address of each thermostat in the alarm nomenclature is represented by the letter "x". Where "x" can be 10, 11, 12, 13, 14 and 15, representing the individual thermostats 1, 2, 3, 4, 5 or 6, respectively.

Example: AL0x01

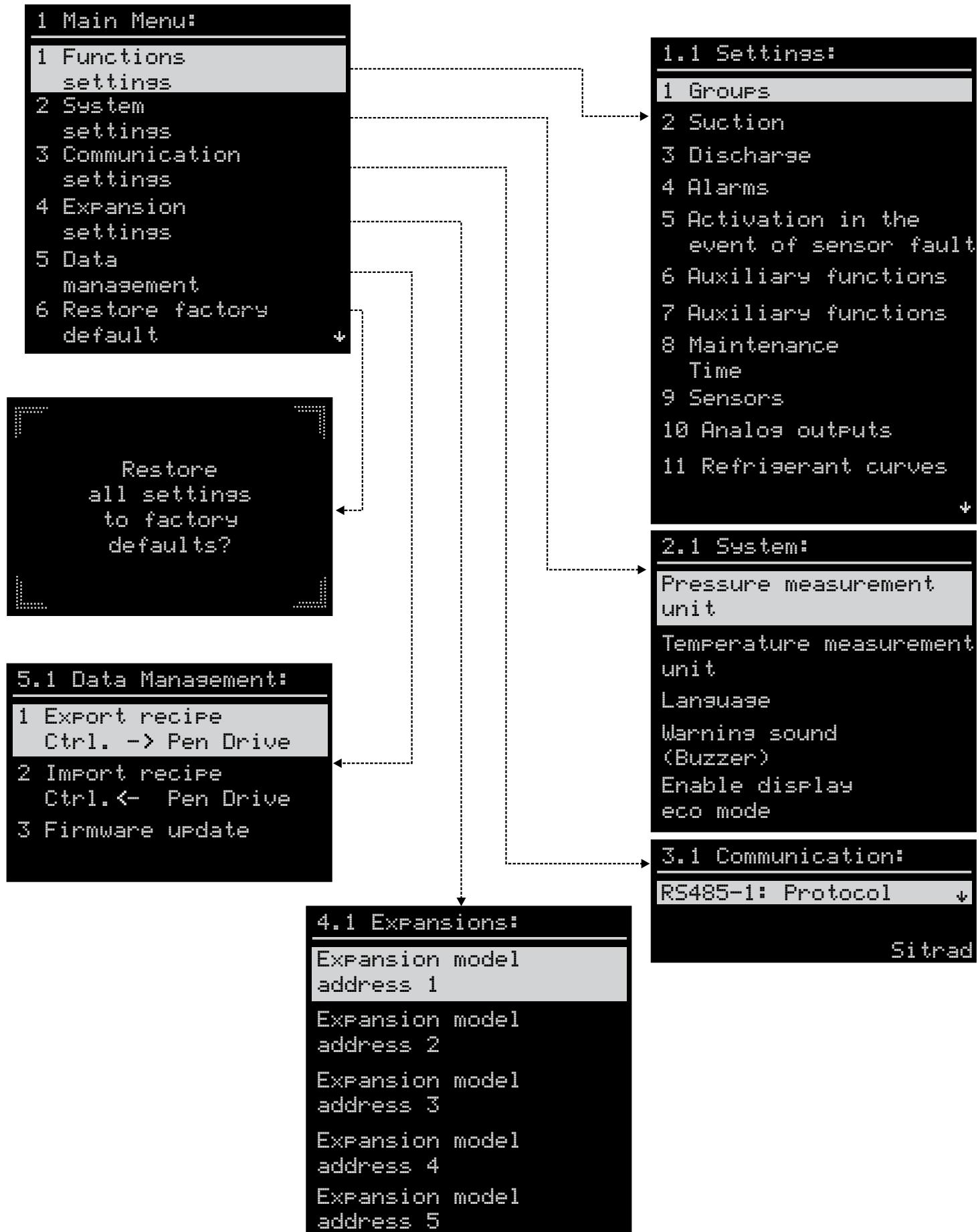
- 10 - Referring to individual thermostat switch 1
- 11 - Referring to individual thermostat switch 2
- 12 - Referring to individual thermostat switch 3
- 13 - Referring to individual thermostat switch 4
- 14 - Referring to individual thermostat switch 5
- 15 - Referring to individual thermostat switch 6

Alarm	Description	Effect
ALxx01	Low temperature	Shut off the output
ALxx02	High temperature	Shut off the output
ALxx03	Temperature sensor fault	Shut off the output

17.4.6 Rotating output alarms : The **RCK-862 plus** can control up to 3 sets of rotating outputs. The address of each set of rotating outputs in the alarm nomenclature is represented by the letter "x". Where "x" can be 16, 17 and 18, representing sets of outputs 1, 2 or 3, respectively.

Example: AL0x01

- 7 - Referring set of outputs 1
- 8 - Referring set of outputs 2
- 9 - Referring set of outputs 3


Alarm	Description	Effect
ALxx01	Output 1 alarm	Shut off output 1 and actuate output 2
ALxx02	Output 2 alarm	Shut off output 2 and actuate output 1

17.4.7 Communication alarms with expansions:

Alarm	Description	Effect
AL1901	No communication with expansion 1	Shut off all controller outputs (except alarm outputs)
AL1902	No communication with expansion 2	Shut off all controller outputs (except alarm outputs)
AL1903	No communication with expansion 3	Shut off all controller outputs (except alarm outputs)
AL1904	No communication with expansion 4	Shut off all controller outputs (except alarm outputs)
AL1905	No communication with expansion 5	Shut off all controller outputs (except alarm outputs)
AL1906	No communication with expansion 6	Shut off all controller outputs (except alarm outputs)
AL1907	No communication with expansion 7	Shut off all controller outputs (except alarm outputs)
AL1908	No communication with expansion 8	Shut off all controller outputs (except alarm outputs)
AL1909	No communication with expansion 9	Shut off all controller outputs (except alarm outputs)
AL1910	No communication with expansion 10	Shut off all controller outputs (except alarm outputs)

18.MAIN MENU

The Main Menu is accessible by pressing the key for at least 3 seconds when using the Groups, Suction or Discharge keys.

18.1 Functions Settings:

For a complete description of all parameters see chapter 19 - Parameter Table.

18.MAIN MENU

18.2 System settings

Feature	Description	Minimum	Maximum	Standard	Unit
2.1	Pressure measurement unit	Psi	bar	Psi	-
2.2	Temperature measurement unit	°C	°F	°C	-
2.3	Language	Portuguese	Spanish	Portuguese	-
2.4	Warning sound (Buzzer)	Yes	No	Yes	-
2.5	Enable display eco mode	Yes	No	Yes	-
2.6	Preferred pressure display	0	1	0	-

2.1 Pressure measurement unit:

Pressure measurement unit used by the controller: Psi or Bar.

2.2 Temperature measurement unit:

Temperature measurement unit used by the controller: Celsius or Fahrenheit.

2.3 Language:

Controller language: Portuguese, English or Spanish.

2.4 Buzzer:

Enables the audible warning function in case of alarm and controller feedback.

2.5 Enables display eco mode:

Enables display sleep mode. After a period of 15 minutes the display brightness decreases, increasing its life span and decreasing energy consumption.

Note: When ECO mode is active, just a short press on any of the keys will disable it.

2.6 Preferred pressure display:

0 = Pressure

1 = Temperature

By default, the **RCK-862 plus** uses pressure data to perform the control. There is an option to change the display to the temperature (°C or °F) corresponding to the saturation of the refrigerant. If the refrigerant has not been configured in the groups menu and the preferred temperature display is changed, the message "cfg" is displayed.

Note: If the pressure read by the sensor is equivalent to a region outside the sub-critical, the message "PC" is displayed, indicating that the value is above the critical point.

18.3 Communication settings:

The **RCK-862 plus** has two independently configurable RS-485 communication ports for communication with the Sitrad software or supervisory ones that use the MODBUS protocol.

Feature	Description	Minimum	Maximum	Standard	Unit
3.1	Rs485 - 1: Protocol	0	2	0	-
3.2	Rs485 - 1: Address	1	247	1	-
3.3	RS485 - 1: Baud rate	0	5	5	-
3.4	Rs485 - 1: Parity	0	2	0	-
3.5	RS485 - 1: Stop bits	1	2	1	-
3.6	Rs485 - 2: Protocol	1	2	2	-
3.7	Rs485 - 2: Address	1	247	1	-
3.8	RS485 - 2: Baud rate	0	5	5	-
3.9	Rs485 - 2: Parity	0	2	0	-
3.10	RS485 - 2: Stop bits	1	2	1	-

18.MAIN MENU

3.1 RS485-X/Protocol:

Communication protocol of RS485-X port.

0 = Sitrad (Available for RS485-1 port only)

1 = MODBUS

3.2 RS485-X/Address:

Network address of the RS485-X port. (Available for Sitrad and MODBUS protocols).

3.3 RS485-X/Baud rate:

Communication data rates (Available for the MODBUS protocol only).

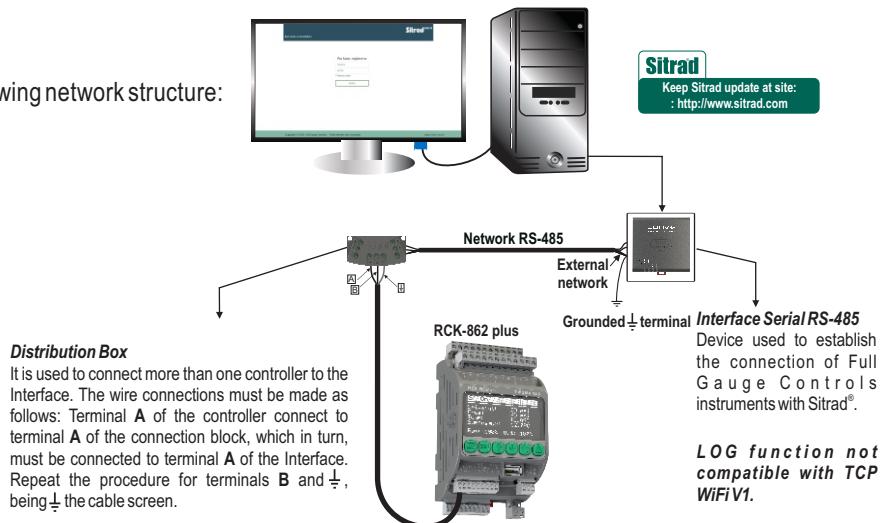
0 = 4800	3 = 38400
1 = 9600	4 = 57600
2 = 19200	5 = 115200

3.4 RS485-X/Parity:

Communication protocol parity (Only available for MODBUS protocol).

0 = no parity
1 = even parity
2 = odd parity

3.5 RS485-X/Stop bits:


Number of stop bits (Only available for the MODBUS protocol).

1 = 1 stop bit
2 = 2 stop bits

18.3.1 Communication with Sitrad:

Communication with the Sitrad Pro software follows the following network structure:

For more information access: www.sitrad.com

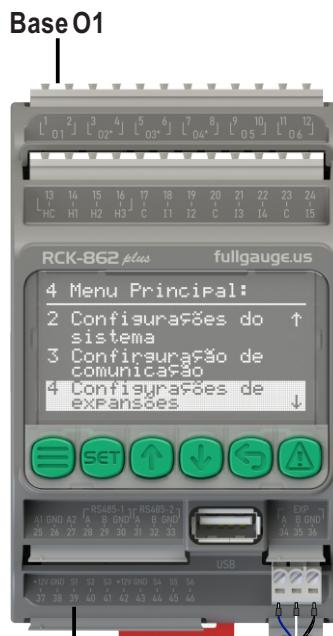
18.3.2 Communication MODBUS:

The **RCK-862 plus** is compatible with the standard MODBUS-RTU protocol. For information on the implemented commands and registration table, contact Full Gauge Controls (e-mail: eng-aplicacao@fullgauge.com.br or phone: (51) 3475-3308).

18.4 Expansions:

The **RCK-862 plus** has the possibility to expand the number of inputs and outputs using expansion modules. This feature allows you to control more complex systems, increasing the number of controlled devices and expanding the possibilities for monitoring and protecting the system.

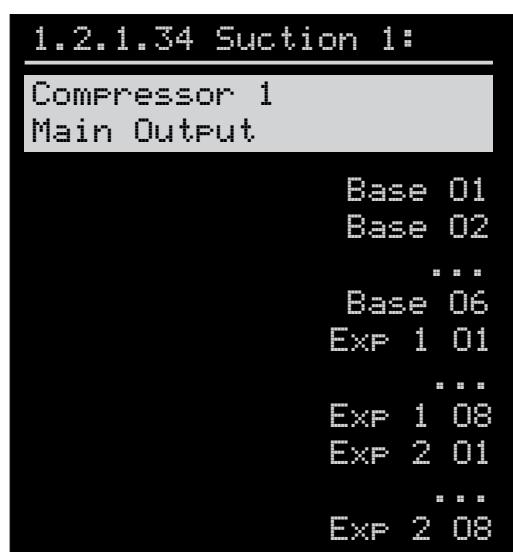
Through the Exp communication port it is possible to connect up to ten expansion modules, gradually expanding the options of inputs and outputs available to the existing logic. It is recommended to use cables with screens / shields and minimum diameter of 24AWG or (0.5mm) for communication between the expansions and the module.


For example, when using an RCK-461 expansion module, 8 more digital outputs (5 STPS and 3 SSR), 2 0-10V analog outputs, 6 dry contact digital inputs and 8 configurable analog inputs for sensors (NTC or 4-20mA) are added.

To enable communication between the **RCK-862 plus** and the expansion modules, you must configure the desired module in Expansion Model address 1 to 9 (4.1 a 4.9) and assign the same address to the expansion module. Each expansion module must have an address between 1 to 10, without repeating an address.

18.MAIN MENU

In each expansion module, an address must be configured between 1 and 10, without repetition. To do this, press the **SET** key for 2 seconds, select the desired address using the keys **↑** and **↓** and press **SET** again to confirm.


On the **RCK-862 plus** the module model used at each address must be selected. To do this, access the menu 4.x, where x represents the address from 1 to 10, and select the corresponding model.

The connection between the expansions must be made with cable (shield / screen) with a minimum diameter of 24AWG (or 0.5mm)

When configuring the expansions, the **RCK-862 plus** automatically expands the possible input and output options for selection.

Example:

18.MAIN MENU

18.5 Data management:

The **RCK-862 plus** has a USB port with support for communication via pen drive, where it is possible to manage recipes and update the controller firmware. Access path: Main Menu → Data manager.

18.5.1 Export recipe → RCK-862 plus → Pendrive (5.1):

Copies the recipe from the controller to the memory of the Pen drive.

The file will be stored in the RCK-862 folder and will be named according to the following logic:

MODEL_AAMMDD_HHMMSS.rec, where:

MODEL = product model, AA = year, MM = month, DD = day, HH = hour, MM = minute, SS = second.

Example: A recipe exported on an **RCK-862 plus**, on 08/02/2019 at 13:30:00 will have the name RCK-862_190802_133000.rec.

18.5.2 Import recipe → RCK-862 plus → Pendrive (5.1):

Copies the recipe from a pen drive to the controller memory.

RCK looks for the recipe in the RCK-862 folder. The recipe name can be a maximum of 32 characters, including the extension (.rec).

Note: The RCK-862 folder must contain a maximum of 32 recipe files.

18.5.3 Firmware update (5.3):

Updates the controller firmware.

The file must be inside the RCK-862 folder and its name must have a maximum of 32 characters, including the extension (.ffg)

Note: The folder must contain a maximum of 32 firmware files.

18.6 Restore factory default:

Restores all parameters to the settings to factory defaults. Access path: Main Menu → 6. Restore Factory Default.

Note: Administrator access level is required to perform this procedure.

Note: To perform this procedure, the control status must be in OFF mode.

19. PARAMETER TABLE

1.1 Groups:

Settings menu related to groups. A group is a set of suction or discharge lines that have links (same refrigerator circuit).

Example: A Rack-type refrigeration system with two suction lines, one for frozen and one for colds, sharing the same discharge line forms a group composed of three pressure switches.

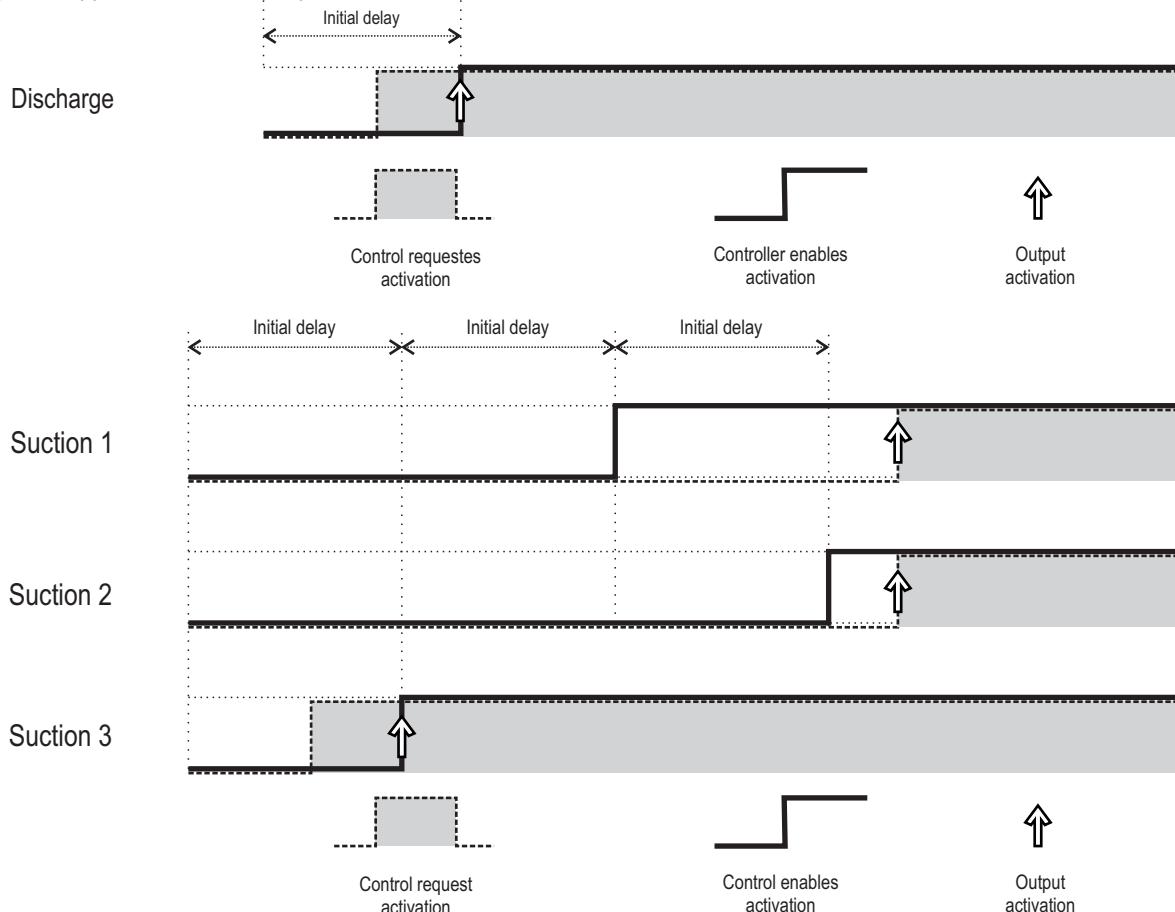
Feature	Description	Minimum	Maximum	Standard	Unit
1.1.1	Initial delay	0	999	6	seg
1.1.2	Number of suction pressure switches	0	3	1	-
1.1.3	Number of discharge pressure switches	0	3	1	-
1.1.4	Suction group 1	1	3	1	-
1.1.5	Suction group 2	1	3	1	-
1.1.6	Suction group 3	1	3	1	-
1.1.7	Group 1: Refrigerant	0	22	0	-
1.1.8	Group 2: Refrigerant	0	22	0	-
1.1.9	Group 3: Refrigerant	0	22	0	-
1.1.10	Group 1 : Economy setpoint input time	0	00:00 [off]	24:00 [off]	min.
1.1.11	Group 1 : Economy setpoint output time	0	00:00 [off]	24:00 [off]	min.
1.1.12	Group 2 : Economy setpoint input time	0	00:00 [off]	24:00 [off]	min.
1.1.13	Group 2 : Economy setpoint output time	0	00:00 [off]	24:00 [off]	min.
1.1.14	Group 3 : Economy setpoint output time	0	00:00 [off]	24:00 [off]	min.
1.1.15	Group 3 : Economy setpoint output time	0	00:00 [off]	24:00 [off]	min.

1.1.1 Initial Delay:

It is the time that the controller waits before enabling the pressure switches when the control is activated.

The discharge pressure switches are enabled after the configured time has elapsed.

The suction pressure switches are enabled according to the following logic:


After the initial delay time has elapsed, the pressure switch, with the lowest index, that is capable of being activated (pressure above the setpoint + step) will be enabled;

After the initial delay time has elapsed for the second time, the configured time will enable the next suitable pressure switch;

After the initial delay time has elapsed for the third time, the configured time will enable the last pressure switch.

If there are no suitable pressure switches after: the configured time has elapsed, it will be enabled in the sequence, suction 1, suction 2 and suction 3.

The same sequence applies to the individual pressure switches.

19.PARAMETER TABLE

1.1.2 Number of suction pressure switches:

Defines the amount of suction pressure switches that are controlled by the **RCK-862 plus**.

1.1.3 Number of discharge pressure switches:

Defines the amount of discharge pressure switches that will be controlled by the **RCK-862 plus**.

1.1.4 to 1.1.6 Suction group x:

The suction pressure switches are linked with the control groups.

1.1.7 to 1.1.9 Refrigerant group x:

Defines the refrigerant used in the group.

Refrigerant List:

0 = Custom	12 = R422D
1 = R12	13 = R427A
2 = R22	14 = R441A
3 = R32	15 = R448A
4 = R134A	16 = R449A
5 = R290	17 = R507A
6 = R404A	18 = R513A
7 = R407A	19 = R600A
8 = R407C	20 = R717A
9 = R407F	21 = R744
10 = R410A	22 = R1234YF
11 = R422A	

1.1.10 / 1.1.12 and 1.1.14 Group x Economy setpoint input time:

Defines the time when the setpoints of the pressure switches belonging to group x is changed to economy mode.

1.1.11 / 1.1.13 and 1.1.15 Group x Economy setpoint output time:

Defines the time when the setpoints of the pressure switches belonging to group x is changed to normal mode.

1.2 Suction:

Opens the list of suction pressure switches.

1.2.x Suction x:

List of parameters related to "x" suction pressure switch control. Where x represents suctions 1, 2 or 3

Feature	Description	Minimum	Maximum	Standard	Unit
1.2.x.1	Control mode	0	4	0	-
1.2.x.2	Pressure setpoint	0	850,0 (58,6)	20,0 (1,4)	Psi (Bar)
1.2.x.3	Economy pressure setpoint	0	850,0 (58,6)	30,0 (2,1)	Psi (Bar)
1.2.x.4	Hysteresis of On / Off compressors	0	425,0 (29,3)	6,0 (0,4)	Psi (Bar)
1.2.x.5	Hysteresis of the Variable Capacity Compressor (VCC)	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.2.x.6	Hysteresis of AP control mode	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.2.x.7	Lower dead zone differential	0	425,0 (29,3)	0	Psi (Bar)
1.2.x.8	Upper dead zone differential	0	425,0 (29,3)	0	Psi (Bar)
1.2.x.9	Integral time (59 = off)	59 [off]	999	59 [off]	sec
1.2.x.10	Minimum pressure setpoint	0	850,0 (58,6)	0	Psi (Bar)
1.2.x.11	Maximum pressure setpoint	0	850,0 (58,6)	850,0 (58,6)	Psi (Bar)
1.2.x.12	Suction pressure sensor	0	-	0	-
1.2.x.13	Backup pressure sensor	0	-	0	-
1.2.x.14	Suction pressure sensor	0	-	0	-
1.2.x.15	Number of compressors	1	6	1	-
1.2.x.16	Compressor 1 - Capacity	1	500	1	kw
1.2.x.17	Compressor 2 - Capacity	1	500	1	kw
1.2.x.18	Compressor 3 - Capacity	1	500	1	kw
1.2.x.19	Compressor 4 - Capacity	1	500	1	kw
1.2.x.20	Compressor 5 - Capacity	1	500	1	kw
1.2.x.21	Compressor 6 - Capacity	1	500	1	kw
1.2.x.22	Compressor 1 - Modulation	0	11	0	-

19.PARAMETER TABLE

Feature	Description	Minimum	Maximum	Standard	Unit
1.2.x.23	Compressor 2 - Modulation	0	4	0	-
1.2.x.24	Compressor 3 - Modulation	0	4	0	-
1.2.x.25	Compressor 4 - Modulation	0	4	0	-
1.2.x.26	Compressor 5 - Modulation	0	4	0	-
1.2.x.27	Compressor 6 - Modulation	0	4	0	-
1.2.x.28	Compressor 1 - Activation mode	0	2	0	-
1.2.x.29	Compressor 2 - Activation mode	0	2	0	-
1.2.x.30	Compressor 3 - Activation mode	0	2	0	-
1.2.x.31	Compressor 4 - Activation mode	0	2	0	-
1.2.x.32	Compressor 5 - Activation mode	0	2	0	-
1.2.x.33	Compressor 6 - Activation mode	0	2	0	-
1.2.x.34	Actuation sequence	0	1	0	-
1.2.x.35	Shut down sequence	0	1	0	-
1.2.x.36	Compressor 1 - Analog output	0	-	0	-
1.2.x.37	Compressor 1 - Main output	0	-	0	-
1.2.x.38	Compressor 1 - Auxiliary output 1	0	-	0	-
1.2.x.39	Compressor 1 - Auxiliary output 2	0	-	0	-
1.2.x.40	Compressor 1 - Auxiliary output 3	0	-	0	-
1.2.x.41	Compressor 2 - Main output	0	-	0	-
1.2.x.42	Compressor 2 - Auxiliary output 1	0	-	0	-
1.2.x.43	Compressor 2 - Auxiliary output 2	0	-	0	-
1.2.x.44	Compressor 2 - Auxiliary output 3	0	-	0	-
1.2.x.45	Compressor 3 - Main output	0	-	0	-
1.2.x.46	Compressor 3 - Auxiliary output 1	0	-	0	-
1.2.x.47	Compressor 3 - Auxiliary output 2	0	-	0	-
1.2.x.48	Compressor 3 - Auxiliary output 3	0	-	0	-
1.2.x.49	Compressor 4 - Main output	0	-	0	-
1.2.x.50	Compressor 4 - Auxiliary output 1	0	-	0	-
1.2.x.51	Compressor 4 - Auxiliary output 2	0	-	0	-
1.2.x.52	Compressor 4 - Auxiliary output 3	0	-	0	-
1.2.x.53	Compressor 5 - Main output	0	-	0	-
1.2.x.54	Compressor 5 - Auxiliary output 1	0	-	0	-
1.2.x.55	Compressor 5 - Auxiliary output 2	0	-	0	-
1.2.x.56	Compressor 5 - Auxiliary output 3	0	-	0	-
1.2.x.57	Compressor 6 - Main output	0	-	0	-
1.2.x.58	Compressor 6 - Auxiliary output 1	0	-	0	-
1.2.x.59	Compressor 6 - Auxiliary output 2	0	-	0	-
1.2.x.60	Compressor 6 - Auxiliary output 3	0	-	0	-
1.2.x.61	Time between compressor actuation	1 [off]	9999	5	sec
1.2.x.62	Time between compressor shut down	1 [off]	9999	5	sec
1.2.x.63	Minimum time compressor on	1 [off]	9999	120	sec
1.2.x.64	Minimum time compressor off	1 [off]	9999	120	sec
1.2.x.65	Time between unloaders actuation	1 [off]	999	5	sec
1.2.x.66	Time between unloader shutdown	1 [off]	999	5	sec
1.2.x.67	VCC : Starting time	1[off]	999	5	sec
1.2.x.68	VCC : Validation time	1 [off]	999	20	sec
1.2.x.69	VCC - Digital : Minimum capacity	10	50	10	%
1.2.x.70	VCC - Digital : Control period	9	120	9	sec
1.2.x.71	VCC - Digital : Minimum valve actuation time	2	30	5	sec
1.2.x.72	VCC - Digital : Maximum no-load time	181	off	120	sec

19. PARAMETER TABLE

1.2.x.1 Control mode:

Selection of compressor control mode. Available modes:

- 0 = Linear
- 1 = Rotation
- 2 = Dead zone
- 3 = Dead zone with rotation
- 4 = Progressive Algorithm (compressors of different capacity)

Note: More information on the control modes in item 14.4.

1.2.x.2 Pressure setpoint:

Pressure value for suction control where the system shuts down all compressors.

1.2.x.3 Pressure Economy:

Alternative pressure setpoint value, generally higher than the pressure setpoint (1.2.x.2).

1.2.x.4 Hysteresis of On/Off compressors:

It is the pressure range for controlling the On/Off compressors with or without unloaders. This pressure value is related to the setpoint that defines the actuation points for each compressor (actuation interval = setpoint + hysteresis).

Note: This parameter is not used in the Progressive Algorithm control mode.

1.2.x.5 Hysteresis of the Variable Capacity Compressor (VCC):

It is the pressure range for controlling Variable Capacity Compressors (VCC).

The compressor modulation is done within this range relative to the setpoint.

Note: This parameter is valid only for Linear and Rotation control modes.

1.2.x.6 Hysteresis of AP Control Mode:

It is the pressure range that corresponds to all compressors actuated (On/Off and VCC). The reference values for actuation are calculated from the capacity of each compressor.

Note: This parameter is used in the Progressive Algorithm control mode.

1.2.x.7 Lower dead zone differential:

Pressure differential below the setpoint that allows the compressors to be shut down. Used in the Dead zone and Dead zone with rotation Control modes.

1.2.x.8 Upper dead zone differential:

Pressure differential above the setpoint that allows the compressors to be actuated. Used in the Dead zone and Dead zone with rotation Control modes.

1.2.x.9 Integral time:

When set to a value greater than Off, it enables the Proportional / Integral (PI) control for the compressors. The value of this parameter corresponds to the time in which 100% of the control error is accumulated (suction pressure - setpoint). This value must be configured according to the characteristics of each installation. The higher the value, the slower and more stable the system's behavior. The lower the configured value, the faster and more oscillatory the behavior is.

1.2.x.10 Minimum pressure setpoint:

Lowest possible value for adjusting the setpoint. The purpose is to prevent unreasonably low pressures from being regulated by mistake from the normal and economy setpoint.

1.2.x.11 Maximum pressure setpoint:

Highest possible value for setpoint adjustment. The purpose is to prevent unreasonably high pressures from being regulated by mistake from the normal and economy setpoint.

1.2.x.12 Suction pressure sensor:

Specifies the pressure sensor used for the suction control.

Sensors options:

- 0 = Not configured
- 1 = Base - S1
- 2 = Base - S2
- 3 = Base - S3
- 4 = Base - S4
- 5 = Base - S5
- 6 = Base - S6

1.2.x.13 Backup pressure sensor:

Specifies the backup pressure sensor used for the suction control.

When configured, this sensor automatically takes the suction pressure reading.

1.2.x.14 Suction temperature sensor:

Specifies the suction temperature sensor (refrigerant).

When configured, it allows monitoring of the suction line overheating.

1.2.x.15 Number of compressors:

Number of compressors used to control suction.

Note: The sensors of the expansion modules will be available after configuring the expansions in menu 4.

1.2.x.16 to 1.2.x.21 Compressor 01-06 capacity:

Compressor capacity in KW. This parameter is used in Control mode by progressive algorithm.

19. PARAMETER TABLE

1.2.**.22 to 1.2.**.27 Compressor x modulation:

Configures the type of compressor actuation.

On/Off: On-off compressor that uses only one digital output (relay) for its actuation.

On/Off 50 | 100: Compressor that uses two digital outputs (relay) for its actuation. The main output, and an auxiliary output in which each output corresponds to 50% of the compressor capacity.

On/Off 33 | 66 | 100 : Compressor that uses three digital outputs (relay) for its actuation. The main output and two auxiliary outputs in which each output corresponds to 33% of the compressor capacity.

On/Off 50 | 75 | 100 : Compressor that uses three digital outputs (relay) for its actuation. The main output corresponds to 50% of the compressor capacity and each of the two auxiliary outputs corresponds to 25% of the compressor capacity.

On/Off 25 | 50 | 75 | 100: Compressor that uses four digital outputs (relay) for its actuation. The main output corresponds to 25% of the compressor capacity and each of the three auxiliary outputs corresponds to 25% of the compressor capacity.

VCC - Analog: Variable capacity compressor that uses an analog output (0-10V) for its control (available in compressor 01 of each suction line). Optionally, it is possible to configure a digital output with start / stop function, in the parameter "compressor 1 main output". **Application example:** Compressors using frequency inverters.

VCC - Digital 10-100 1V: Compressor of variable capacity that uses a main output (relay) for its actuation plus an auxiliary output (SSR) for capacity modulation. The compressor's instantaneous capacity is 0% with the auxiliary output on and 100% with the auxiliary output off. **Application example:** Bitzer CR II compressors.

VCC - Digital 10-100 2V : Variable capacity compressor that uses a main output (relay) for its actuation plus three auxiliary outputs (SSR) for capacity modulation. The compressor's instantaneous capacity is 0% with the two auxiliary outputs on, 50% with an auxiliary output on and 100% with the two auxiliary outputs off. **Application example:** Bitzer CR II compressors.

VCC - Digital 10-100 3V: Compressor of variable capacity that uses one main output (relay) for its actuation plus three auxiliary outputs (SSR) for capacity modulation. The compressor's instantaneous capacity is 0% with the three auxiliary outputs on, 33% with two outputs on, 66% with an auxiliary output on and 100% with the three auxiliary outputs off. **Application example:** Bitzer CR II compressors.

VCC - Digital 33-100 1V: Variable capacity compressor that uses a main output (relay) for its actuation plus an auxiliary output (SSR) for capacity modulation. The compressor's instantaneous capacity is 33% with the auxiliary output on and 100% with the auxiliary output off.

VCC - Digital 33-100 2V: Compressor of variable capacity that uses a main output (relay) for its actuation plus two auxiliary outputs (SSR) for capacity modulation. The compressor's instantaneous capacity is 33% with the two auxiliary outputs on, 66% with an auxiliary output on and 100% with the two auxiliary outputs off.

VCC - Digital 50-100 1V: Compressor of variable capacity that uses a main output (relay) for its actuation plus an auxiliary output (SSR) for capacity modulation. The compressor's instantaneous capacity is 50% with the auxiliary output on and 100% with the auxiliary output off.

1.2.**.28 to 1.2.**.33 Compressor 01-06 Activation mode:

Parameter that determines the preferred actuation of the compressor outputs that use auxiliary digital outputs. For more information on the unloader actuation modes (auxiliary outputs) see section: 14.2 Compressor Modulation.

- 0 = Incremental Mode
- 1 = Unloader Mode
- 2 = Selective Mode

1.2.**.34 Actuation sequence:

Defines the sequence in which compressors and unloaders are actuated.

0-PPu (Actuates compressors first and then unloaders);

1-PuPu (Actuates a compressor completely before starting another compressor).

1.2.**.35 Shut down sequence:

Defines the sequence in which compressors and loaders are shut down.

0-PPu (shut down unloaders first and then compressors);

1-PuPu (shut down a compressor completely before starting another compressor).

1.2.**.36 Compressor 01 analog output:

Analog output address of compressor 01. This parameter is available if the compressor modulation is VCC-Analog

- 0 = Not configured
- 1 = A1
- 2 = A2

19. PARAMETER TABLE

1.2.x.37, 41, 45, 49, 53, 57 Compressor 01-06 main output:

Compressorxx digital output address.

Digital output

address:

0 = Not configured

1 = Base - O1

2 = Base - O2

3 = Base - O3

4 = Base - O4

5 = Base - O5

6 = Base - O6

Note: If a sensor already in use is selected, it will be replaced.

1.2.x.38, 42, 46, 50, 54, 58 Compressor 01-06 auxiliary output 01:

Compressorxx auxiliary output 01 address.

1.2.x.39, 43, 47, 51, 55, 59 Compressor 01-06 auxiliary output 02:

Compressorxx auxiliary output 02 address.

1.2.x.40, 44, 48, 52, 56, 60 Compressor 01-06 auxiliary output 03:

Compressorxx auxiliary output 03 address.

1.2.x.61 Time between compressor actuation:

The function applies to the main control outputs of the compressors and is the minimum time between two actuations of the main digital outputs in the suction lines. This time value ensures that no simultaneous actuation of compressors will occur, preventing surges in the supply network and excessive fluctuations in the control pressure.

1.2.x.62 Time between compressor shutdowns:

The function applies to the main control outputs of the compressors and is the minimum time between two shutdowns of the main digital outputs on the suction. This time value guarantees that simultaneous compressor shutdowns will not occur, avoiding electrical variations in the supply network and excessive fluctuations in the control pressure.

1.2.x.63 Minimum time compressor on:

It is the minimum time that the compressor will remain on, that is, time between the last start and the next stop.

1.2.x.64 Minimum time compressor off:

It is the minimum time that the compressor will remain off, that is, the time between the last stop and the next start.

1.2.x.65 Time between unloaders actuations:

It is the time interval between the actuation of two auxiliary digital outputs (unloaders) of the same compressor.

Example: In a compressor with modulation 0 | 33 | 66 | 100 that uses one main and two auxiliary outputs. The time between actuating two auxiliary outputs. The time between actuating two auxiliary outputs (66 and 100%) must be greater than the time between actuating unloaders.

1.2.x.66 Time between unloader shutdown:

It is the time interval between shutting down two auxiliary digital outputs (unloaders) from the same compressor.

Example: In a compressor with modulation 0 | 33 | 66 | 100 that uses one main and two auxiliary outputs. The time between shutdowns of two auxiliary outputs (66 and 100%) must be greater than the time between shutdowns of unloaders.

1.2.x.67 VCC-Startup time:

It is the time that the Variable Capacity Compressor remains in the starting condition. For the VCC-Analog compressor the analog output takes the value configured in (1.10.x.3) but if the control calculates a demand greater than the starting value, the required value will be applied.

The VCC-Digital compressor operates without load during the start-up time, that is, with a capacity equal to zero.

1.2.x.68 VCC-Validation time:

This time is a validation of the need to actuate or shutdown a next compression stage and avoid unnecessary actuations or shutdowns. When the VCC compressor reaches the minimum or maximum value, where the control would immediately shutdown or actuate a next compression stage (On / Off compressor or unloaders valve), the control will wait for this time to validate the transition and take the next action.

1.2.x.69 VCC-Digital / Minimum capacity:

Sets a minimum value for the capacity of the digital variable capacity compressor.

1.2.x.70 VCC-Digital / Control period:

Configures the fixed modulation signal period for the Digital Variable Capacity Compressor. When set to the default value (auto) the period is automatically calculated by the control algorithm.

1.2.x.71 VCC-Digital / Minimum valve actuation time:

Sets the minimum time that the valves of the VCC-Digital compressors must remain on or off during modulation.

1.2.x.72 VCC-Digital / Maximum no-load time:

Maximum time that the Digital Variable Capacity Compressor remains in operation at minimum capacity or with auxiliary outputs on, resulting in a capacity equal to zero. After this time has elapsed, one of the auxiliary outputs is switched off for the same time value as configured in this parameter, causing the compressor to operate at a higher capacity.

Note: This function works even during the start-up time, so it is recommended to use a start-up time, lower than the maximum no-load time.

Note: This function is only available for compressors with VCC-Digital modulation 10-100 1V, 2V and 3V.

19.PARAMETER TABLE

1.3 Discharge:

Opens the list of discharge pressure switches.

1.3.x Discharge x:

List of parameters related to the control of the discharge pressure switch "x". Where x represents discharges 1, 2 or 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.3.x.1	Control mode	0	3	0	-
1.3.x.2	Control type	0	1	0	-
1.3.x.3	Pressure setpoint	0	850,0 (58,6)	100,0 (6,9)	Psi (Bar)
1.3.x.4	Economy pressure Setpoint	0	850,0 (58,6)	80,0 (5,5)	Psi (Bar)
1.3.x.5	Digital outputs Hysteresis	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.3.x.6	Analog output Hysteresis	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.3.x.7	Lower dead zone differential	0	425,0 (29,3)	0	Psi (Bar)
1.3.x.8	Upper dead zone	0	425,0 (29,3)	0	Psi (Bar)
1.3.x.9	Minimum setpoint pressure	0	850,0 (58,6)	0	Psi (Bar)
1.3.x.10	Maximum setpoint pressure	0	850,0 (58,6)	850,0 (58,6)	Psi (Bar)
1.3.x.11	Temperature setpoint	0	200,0 (392,0)	60 (140,0)	°C (F)
1.3.x.12	Economy temperature setpoint	0	200,0 (392,0)	50 (122,0)	°C (F)
1.3.x.13	Digital output hysteresis	0	200,0 (392,0)	10 (18,0)	°C (F)
1.3.x.14	Analog output hysteresis	0	200,0 (392,0)	10 (18,0)	°C (F)
1.3.x.15	Lower dead zone limit	0	200,0 (392,0)	0 (0)	°C (F)
1.3.x.16	Upper dead zone limit	0 (0)	200,0 (392,0)	0 (0)	°C (F)
1.3.x.17	Minimum temperature setpoint	0 (32)	200,0 (392,0)	0 (32)	°C (F)
1.3.x.18	Maximum temperature setpoint	0 (32)	200,0 (392,0)	200 (392,0)	°C (F)
1.3.x.19	Discharge pressure sensor	0	-	0	-
1.3.x.20	Backup pressure sensor	0	-	0	-
1.3.x.21	Discharge temperature sensor	0	-	0	-
1.3.x.22	Backup temperature sensor	0	-	0	-
1.3.x.23	External temperature sensor (TBS)	0	-	0	-
1.3.x.24	Number of fans	1	6	1	-
1.3.x.25	Fan 1 Modulation	0	1	0	-
1.3.x.26	Fan 1 Analog output	0	-	0	-
1.3.x.27	Fan 1 Digital output	0	-	0	-
1.3.x.28	Fan 2 Digital output	0	-	0	-
1.3.x.29	Fan 3 Digital output	0	-	0	-
1.3.x.30	Fan 4 Digital output	0	-	0	-
1.3.x.31	Fan 5 Digital output	0	-	0	-
1.3.x.32	Fan 6 Digital output	0	-	0	-
1.3.x.33	Minimum time between actuations	1 [off]	9999	5	sec
1.3.x.34	Minimum time between shutdowns	1 [off]	9999	5	sec
1.3.x.35	Minimum time fan on	1 [off]	9999	30	sec
1.3.x.36	Minimum time fan off	1 [off]	9999	30	sec
1.3.x.37	Analog output start time	1 [off]	999	10	sec
1.3.x.38	Analog output validation time	1 [off]	999	20	sec
1.3.x.39	Integral time	59 [off]	999	59 [off]	sec

1.3.x.1 Control Mode:

Selection of the fan control mode. Available modes:

0 = Linear (same cap.)

1 = Rotation

2 = Dead zone

3 = Dead zone with rotation

19. PARAMETER TABLE

1.3.x.2 Control type:

The discharge control can be carried out by pressure or temperature.

In pressure control, the pressure sensor, pressure setpoint and pressure hysteresis will be considered.

Temperature control will consider the temperature sensor, temperature setpoint and temperature hysteresis

Note: Calculation of the subcooling only available when the control type is by pressure.

0 = Pressure

1 = Temperature

1.3.x.3 Pressure setpoint:

Pressure value for controlling the discharge in which the system shuts down all fans.

1.3.x.4 Economy pressure setpoint:

Alternative pressure setpoint value, usually less than the pressure setpoint (1.3.x.3).

1.3.x.5 Pressure hysteresis of digital outputs:

It is pressure range for controlling the fans linked with the digital outputs. This pressure value is related to the setpoint that defines the actuation points for each fan (activation interval = setpoint + hysteresis).

1.3.x.6 Analog output Hysteresis:

It is pressure range for controlling the fan linked with the analog output. The modulation of the analog output is within this range related to the setpoint. This parameter is valid only for Linear and Rotation control modes.

1.3.x.7 Lower dead zone differential (pressure):

Pressure differential, below the setpoint that allows the compressors to be shut off. Used in the Dead zone and Dead zone with rotation control modes.

1.3.x.8 Upper dead zone differential (pressure):

Pressure differential, above the setpoint that allows the compressors to be actuated. Used in the Dead zone and Dead zone with rotation control modes.

1.3.x.9 Minimum pressure setpoint:

Lowest possible value for setpoint adjustment. The purpose is to prevent unreasonably low pressures from being regulated by mistake from the normal and economy setpoint.

1.3.x.10 Maximum pressure setpoint:

Highest possible value for setpoint adjustment. The purpose is to prevent unreasonably high pressures from being regulated by mistake from the normal and economy setpoint.

1.3.x.11 Temperature setpoint:

Temperature value for controlling the discharge in which the system shuts off all fans.

1.3.x.12 Economy temperature setpoint:

Alternative temperature setpoint value, usually lower than the pressure setpoint (1.3.x.11).

1.3.x.13 Digital outputs Hysteresis:

It is the temperature range for controlling the fans linked with the digital outputs. This pressure value is related to the setpoint that defines the actuation points for each fan (activation interval = setpoint + hysteresis).

1.3.x.14 Analog output hysteresis:

It is the temperature range for controlling the fan linked with the analog output. The modulation of the analog output is within this range related to the setpoint. This parameter is valid only for Linear and Rotation control modes.

1.3.x.15 Lower dead zone limit (temperature):

Lower limit whose purpose is to avoid that, by mistake, excessively low temperatures are regulated from the normal and economy setpoint.

1.3.x.16 Upper dead zone limit (temperature)

Upper limit whose purpose is to avoid that, by mistake, excessively high temperatures are regulated from the normal and economy setpoint.

1.3.x.17 Minimum temperature setpoint:

Lowest possible value for setpoint adjustment. The purpose is to avoid that, by mistake, excessively low temperatures are set from the normal and economy setpoint.

1.3.x.18 Maximum temperature setpoint:

Highest possible value for setpoint adjustment. The purpose is to avoid that, by mistake, excessively high temperatures are set from the normal and economy setpoint.

19. PARAMETER TABLE

1.3.x.19 Discharge pressure sensor:

Specifies the pressure sensor used to control the discharge.

Sensor options:

- 0 = Not configured
- 1 = Base - S1
- 2 = Base - S2
- 3 = Base - S3
- 4 = Base - S4
- 5 = Base - S5
- 6 = Base - S6

1.3.x.20 Backup pressure sensor:

Specifies the backup pressure sensor used to control the discharge.

When configured, this sensor automatically takes the discharge pressure reading.

1.3.x.21 Discharge temperature sensor:

Discharge temperature sensor address (refrigerant).

When configured, it allows monitoring of the discharge line overheating.

1.3.x.22 Backup temperature sensor:

Specifies the backup pressure sensor used to control the discharge.

When configured, this sensor automatically takes the discharge pressure reading.

1.3.x.23 External temperature sensor (TBS):

Specifies the dry air bulb temperature sensor.

Note: The sensors present in the expansion modules will be listed in menu 4 after their configuration.

1.3.x.24 Number of fans:

Number of fans used to control the discharge.

1.3.x.25 Fan 1 Modulation:

Fan 1 modulation type is selected: ON / OFF (digital output) or INVERTER (analog output). It is possible to configure an output with start / stop function to operate together with the analog. To do this, just configure the "digital output of fan 1".

- 0 = No modulation
- 1 = Inverter

1.3.x.26 Fan 1 Analog output:

Analog output address for fan 1 inverter.

- 0 = Not configured
- 1 = Base - A1
- 2 = Base - A2

1.3.x.27 to 1.3.x.32 Fan 01 to 06 Digital output:

Digital output address of fan 1 to 6.

- 0 = Not configured
- 1 = Base - O1
- 2 = Base - O2
- 3 = Base - O3
- 4 = Base - O4
- 5 = Base - O5
- 6 = Base - O6

Note: The outputs present in the expansion modules will be listed in menu 4 after their configuration.

1.3.x.33 Minimum time between starts:

The function applies to the main control outputs of the fans and is the minimum time between two actuations of the main digital outputs at discharge. This time guarantees that simultaneous fan actuations will not occur, preventing surges in the supply network and excessive fluctuations in the control variable.

1.3.x.34 Minimum time between shutdowns:

The function applies to the main control outputs of the fans and is the minimum time between two shutdowns of the main digital outputs. This time ensures that simultaneous fan shutdowns will not occur, preventing electrical surges in the supply network and excessive fluctuations in the control pressure.

1.3.x.35 Minimum time fan on :

It is the minimum time the fan will remain on, that is, the time between the last start and the next stop.

1.3.x.36 Minimum time fan off:

It is the minimum time that the fan will remain off, that is, the time between the last start and the next stop.

19. PARAMETER TABLE

1.3.×.37 Analog output starting time:

It is the time that the analog output remains at the starting value. If the control calculates a demand greater than the starting value, the required value will be applied.

1.3.×.38 Analog output validation time:

This time is a validation of the need to actuate or shutdown a next ventilation stage and avoid unnecessary fan actuation or shutdown. When reaching the minimum or maximum value, where the control would immediately shut down or actuate a next fan, the control will wait for this time to validate the transition and take the next action.

1.3.×.39 Integral time:

When configured, it enables the Proportional / Integral (PI) control of the fans. The value of this parameter corresponds to the time in which 100% of the control error (hysteresis-setpoint) is accumulated. This value must be configured according to the characteristics of each system. The higher the value, the slower and more stable the system's behavior. The lower the configured value, the faster and more oscillatory the behavior is.

1.4 Alarms:

Parameters related to alarm settings.

1.4.1 Alarm settings:

Feature	Description	Minimum	Maximum	Standard	Unit
1.4.1.1	Time to validate alarms	5	9999	5	sec
1.4.1.2	Alarm inhibition time	5	9999	5	sec

1.4.1.1 Time to validate alarms:

It is the time between the moment when the controller identified an alarm condition and its indication.

1.4.1.2 Time to inhibit alarms:

It is the time when the alarm events are considered after the controller is energized.

1.4.2 Suction alarms:

Alarms are assigned separately for each suction pressure switch. In this list, select the suction to which you want to configure the alarms.

1.4.2.× Suction alarms:

If configured with the OFF parameter, alarms are not enabled. The letter "x" represents suction 1, 2 and 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.4.2.×.1	Low pressure	-14,8 [off] (-1,1)	850,0 (58,6)	-14,8 [off] (-1,1)	Psi (Bar)
1.4.2.×.2	High pressure	-14,7 (-1,0)	850,1 [off] (58,7)	850,1 [off] (58,7)	Psi (Bar)
1.4.2.×.3	Hysteresis of pressure alarms	1,0 (0,1)	20,0 (1,4)	1,0 (0,1)	Psi (Bar)
1.4.2.×.4	Critical overheating	-0,1 [off] (-0,2)	50,0 (90,0)	-0,1 [off] (-0,2)	°C (F)
1.4.2.×.5	Low overheating	-0,1 [off] (-0,2)	50,0 (90,0)	-0,1 [off] (-0,2)	°C (F)
1.4.2.×.6	High overheating	0,0	50,1 [off] (90,2)	50,1 [off] (90,2)	°C (F)
1.4.2.×.7	Hysteresis of temperature alarms	0,3 (0,5)	20,0 (36,0)	5,0 (9,0)	°C (F)

1.4.2.×.1 Low pressure:

Enables the alarm when the pressure is lower than the configured value.

1.4.2.×.2 High pressure:

Enables the alarm when the pressure is higher than the configured value.

1.4.2.×.3 Hysteresis of pressure alarms:

It is pressure difference to get out of the alarm situation.

1.4.2.×.4 Critical overheating:

Enables the alarm when the temperature is lower than the configured value. This value is usually lower than the low overheating value (1.4.×.5)

1.4.2.×.5 Low overheating:

Enables the alarm when the temperature is lower than the configured value.

1.4.2.×.6 High overheating:

Enables the alarm when the overheating is higher than the configured value.

19. PARAMETER TABLE

1.4.2.x.7 Hysteresis of temperature alarms:

It is the temperature variation necessary to get out of the alarm situation.

1.4.3 Discharge alarms:

1.4.3.x Discharge alarms - discharge 1 to 3

The letter x represents discharges 1, 2 and 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.4.3.x.1	Low pressure	-14,8 [off] (-1,1)	850,0 (58,6)	-14,8 [off] (-1,1)	Psi (Bar)
1.4.3.x.2	High pressure	-14,7 (-1,0)	850,1 [off] (58,7)	850,1 [off] (58,7)	Psi (Bar)
1.4.3.x.3	Critical high pressure	-14,7 (-1,0)	850,1 [off] (58,7)	850,1 [off] (58,7)	Psi (Bar)
1.4.3.x.4	Hysteresis of pressure alarms	1,0 (0,1)	20,0 (1,4)	1,0 (0,1)	Psi (Bar)
1.4.3.x.5	Low temperature	-50,1 [off] (-58,2)	200,0 (392,0)	-50,1 [off] (-58,2)	°C (F)
1.4.3.x.6	High temperature	-50,0 [off] (-58,0)	200,1 (392,2)	200,1 [off] (392,2)	°C (F)
1.4.3.x.7	Critical high temperature	-50,0 (-58,0)	200,1 [off] (392,2)	200,1 [off] (392,2)	°C (F)
1.4.3.x.8	Low subcooling	-0,1 [off] (-0,2)	20,0 (36,0)	-0,1 [off] (-0,2)	°C (F)
1.4.3.x.9	High subcooling	0,0	200,1 [off] (360,2)	200,1 [off] (360,2)	°C (F)
1.4.3.x.10	Hysteresis of temperature alarms	0,3 (0,5)	20,0 (36,0)	5,0 (9,0)	°C (F)

1.4.3.x.1 Low pressure:

Enables the alarm when the pressure is lower than the configured value.

1.4.3.x.2 High pressure:

Enables the alarm when the pressure is higher than the configured value.

1.4.3.x.3 Critical high pressure:

Enables the alarm when the pressure is higher than the configured value. Generally higher than the value set in the high-pressure alarm (1.4.3.x.2).

1.4.3.x.4 Hysteresis of pressure alarms:

It is the pressure difference to get out of the alarm situation.

1.4.3.x.5 Low pressure:

Enables the alarm when the temperature is lower than the configured value.

1.4.3.x.6 High temperature:

Enables the alarm when the temperature is higher than the configured value.

1.4.3.x.7 Critical high temperature:

Enables the alarm when the temperature is higher than the configured value. Generally higher than the value set in the high temperature alarm (1.4.3.x.6).

1.4.3.x.8 Low subcooling:

Enables the alarm when the subcooling is lower than the configured value.

1.4.3.x.9 High subcooling:

Enables the alarm when the subcooling is higher than the configured value.

1.4.3.x.10 Hysteresis of temperature alarms:

It is the temperature variation necessary to get out of the alarm situation.

1.4.4 Reset:

Automatic reset settings for each suction and discharge line.

Feature	Description	Minimum	Maximum	Standard	Unit
1.4.4.1	Number of attempts	0 [off]	11 [ever]	0	-
1.4.4.2	Retry interval	1	60	15	min
1.4.4.3	Reset period	1	24	1	h

1.4.4.1 Number of attempts

Number of automatic reset attempts made within the Reset period (1.4.4.3)

19. PARAMETER TABLE

1.4.4.2 Interval between attempts:

Time interval between two subsequent attempts of automatic reset.

1.4.4.3 Reset period:

This feature allows you to adjust the time for the number of automatic reset attempts (1.4.4.1). If all automatic resets have already been carried out within the time set in this feature and another fault occurs, the **RCK-862 plus** controller only resumes operation with a manual reset.

1.4.5 Alarm outputs:

It allows configuring up to 6 alarm outputs with specific features.

1.4.5.x Output x:

The **RCK-862 plus** has up to six configurable alarm outputs. For each output, a specific alarm on the control lines can be linked and the output can be configured to cycle on and off or only on in the event of an alarm.

The letter x represents alarm outputs 1 to 6.

Feature	Description	Minimum	Maximum	Standard	Unit
1.4.5.x.1	Suction / discharge pressure switch	0	6	0	-
1.4.5.x.2	Output function	0	24	0	-
1.4.5.x.3	Time On	0	999	0	sec
1.4.5.x.4	Time off	0	999	0	sec
1.4.5.x.5	Contact type NO-NC	0	1	0	-
1.4.5.x.6	Digital output	0	-	0	-

1.4.5.x.1 Suction / discharge pressure switch:

Associates the alarm output to one of the lines:

- 0 = Off
- 1 = Suction 1
- 2 = Suction 2
- 3 = Suction 3
- 4 = Discharge 1
- 5 = Discharge 2
- 6 = Discharge 3

1.4.5.x.2 Output function:

The alarm output is linked with one of the following alarm events:

0 = Off	13 = Low overheating
1 = Any alarm	14 = High overheating
2 = Low pressure	15 = Any overheating alarm
3 = High pressure	16 = Low subcooling
4 = Critical high pressure	17 = High subcooling
5 = Any pressure alarm	18 = Any subcooling alarm
6 = Low pressure	19 = Pressure sensor fault
7 = High pressure	20 = Temperature sensor fault
8 = High critical temperature	21 = Dry bulb temperature sensor fault
9 = Any temperature alarm	22 = Wet bulb temperature sensor fault
10 = Digital input	23 = Compressor temperature sensor fault
11 = Awaiting manual reset	24 = Fault in any sensor
12 = Critical overheating	

1.4.5.x.3 Time on:

Time that the output remains actuated in an alarm event.

1.4.5.x.4 Time off:

Time the output remains shutdown in an alarm event. When this time is set to OFF, the output will be activated if there is an alarm condition.

1.4.5.x.5 Contact type:

Output polarity

0-NO: When the output is actuated, the contact is closed.

1-NC: When the output is actuated, the contact is open.

19. PARAMETER TABLE

1.4.5.x.6 Digital output:

Digital output address for alarm.

- 0 = Not configured
- 1 = Base - O1
- 2 = Base - O2
- 3 = Base - O3
- 4 = Base - O4
- 5 = Base - O5
- 6 = Base - O6

Note: If a sensor already in use is selected, it will be replaced.

1.5 Actuation in case of sensor fault:

It allows configuring the status of each compressor or fan (on, off or cycling) in a sensor fault condition that measures the suction pressure or the discharge pressure/temperature. This logic serves to keep the system in emergency operation in the event of a sensor fault.

If a backup sensor is configured, this mode will only start if the main and backup sensors are faulty.

The letter x represents suctions (x between 1 and 3) and discharges (x between 4 and 6).

AL0x01

- 4 - Referring to Discharge 1
- 5 - Referring to Discharge 2
- 6 - Referring to Discharge 3

Feature	Description	Minimum	Maximum	Standard	Unit
1.5.x.1	Compressor 1	0 [off]	2/Cycling	0 [off]	-
1.5.x.2	Compressor 2	0 [off]	2/Cycling	0 [off]	-
1.5.x.3	Compressor 3	0 [off]	2/Cycling	0 [off]	-
1.5.x.4	Compressor 4	0 [off]	2/Cycling	0 [off]	-
1.5.x.5	Compressor 5	0 [off]	2/Cycling	0 [off]	-
1.5.x.6	Compressor 6	0 [off]	2/Cycling	0 [off]	-
1.5.x.7	Time on for cycle timer	1	60	5	min
1.5.x.8	Time off for cycle timer	1	60	5	min

1.5.x.1 to 1.5.x.6 Compressor 01 to 06:

The compressor status in case of sensor fault is defined:

Off: Compressor or fan completely off.

On: Compressor or fan fully on (100% capacity).

Cyclic: Compressor off, according to times 1.5.x.7 and 1.5.x.8.

Example: Output 01 = on / Output 02 = off / Output 03 = on / Output 04 = Cyclic / Output 05 = Cyclic / Output 06 = off.

In this case, compressors 1 and 3 will always remain on, compressors 2 and 6 will remain off and compressors 4 and 5 remain cycling. This condition will be maintained until the problem is corrected (connection or replacement of the sensor).

1.5.x.7 Time on for cycle timer:

Time that the compressor or fan remains on.

1.5.x.8 Time off for cycle timer:

Time that the compressor or fan remains off.

1.6 Auxiliary inputs:

It allows configuring up to 8 auxiliary inputs with specific functions.

The letter "x" represents digital inputs 1 to 30.

1.6.1 Inputx:

Feature	Description	Minimum	Maximum	Standard	Unit
1.6.x.1	Use link	0	17	0	-
1.6.x.2	Input function	0	34	0	-
1.6.x.3	NO-NC contact type	0 [no]	1/ NC	0 [no]	-
1.6.x.4	Digital input address	0	-	0	-

19. PARAMETER TABLE

1.6. x. 1 Use Link:

Links input x with a pressure switch, group, or auxiliary function according to:

0 = Off	4 = Discharge 1	8 = Group 1 suction	12 = Group 3 suction	16 = Rotation outputs 3
1 = Suction 1	5 = Discharge 2	9 = Group 2	13 = All pressure switches	17 = All outputs
2 = Suction 2	6 = Discharge 3	10 = Group 2 suction	14 = Rotation outputs 1	
3 = Suction 3	7 = Group 1	11 = Group 3	15 = Rotation outputs 2	

1.6. x. 2 Input function:

Input x can have different functions linked with its actuation and shutdown according to:

- **None**: Function not configured, with no effect.

- **Safety input X**:

For Suction and Discharge: Immediately disconnect the compressor or fan x (1 to 6) from the associated suction or discharge line. Records an alarm event.

For Caster output sets: Safety input 1 turns off output 1, Safety input 2 turns off output 3 and Safety input 3 turns off the operating output and Turns on the other output. Records an alarm event.

- **Economy setpoint**: Changes the setpoint to economy.

- **Actuates all outputs**: Actuates all compressors of the linked suction or discharge line. If an alarm occurs, this command is canceled.

- **Shutdown all outputs**: Shuts down all compressors or fans of the linked pressure switch.

- **Low Pressure (LP)**: Low pressure alarm input - has the same effect as the low-pressure alarm.

- **High Pressure (HP)**: High pressure alarm input. When linked with a suction line, it has the same effect as the high-pressure alarm. When linked with a discharge line, it has the same effect as the high critical pressure alarm.

- **Activates Pump Down**: Activates the Pump Down shutdown function.

- **Enables adiabatic condensation**: Enables adiabatic condensation control.

- **Enables floating condensation**: Enables floating condensation control.

- **Virtual alarm**: Visual alarm input linked with the suction or discharge line.

- **External alarm 1 to 10**: Visual alarm.

- **External fault 1 to 5**: Alarm that shuts down all the compressors or fans of the configured suction or discharge line.

- **External fault 6 to 10**: Alarm that switches off all the compressors or fans of the configured suction or discharge line, respecting the time between shutdowns.

0 = None

1 = Safety input 1 (Available for 1.6.x.1 = 1 to 6, 14, 15, 16)

2 = Safety input 2 (Available for 1.6.x.1 = 1 to 6, 14, 15, 16)

3 = Safety input 3 (Available for 1.6.x.1 = 1 to 6, 14, 15, 16)

4 = Safety input 4 (Available for 1.6.x.1 = 1 to 6)

5 = Safety input 5 (Available for 1.6.x.1 = 1 to 6)

6 = Safety input 6 (Available for 1.6.x.1 = 1 to 6)

7 = Actuates economy setpoint (Available for 1.6.x.1 = 1 to 13)

8 = Liga todas as saídas (Available for 1.6.x.1 = 1 to 12)

9 = Shutdown off all outputs (Available for any value off 1.6.x.1)

10 = Low pressure (LP) (Available for 1.6.x.1 = 1 to 6)

11 = High pressure (HP) (Available 1.6.x.1 = 1 to 6)

12 = Actuates Pump Down (Available for 1.6.x.1 = 1 to 3, 7 to 13)

13 = Actuates adiabatic condensation (Available for 1.6.x.1 = 4 to 6, 7, 9, 11, 13)

14 = Actuates floating condensation (Available for 1.6.x.1 = 4 to 6, 7, 9, 11, 13)

15 = External alarm 1 (Available for 1.6.x.1 = 1 to 13)

16 = External alarm 2 (Available for 1.6.x.1 = 1 to 13)

17 = External alarm 3 (Available for 1.6.x.1 = 1 to 13)

18 = External alarm 4 (Available for 1.6.x.1 = 1 to 13)

19 = External alarm 5 (Available for 1.6.x.1 = 1 to 13)

20 = External alarm 6 (Available for 1.6.x.1 = 1 to 13)

21 = External alarm 7 (Available for 1.6.x.1 = 1 to 13)

22 = External alarm 8 (Available for 1.6.x.1 = 1 to 13)

23 = External alarm 9 (Available for 1.6.x.1 = 1 to 13)

24 = External alarm 10 (Available for 1.6.x.1 = 1 to 13)

25 = External fault 1 (Available for 1.6.x.1 = 1 to 13)

26 = External fault 2 (Available for 1.6.x.1 = 1 to 13)

27 = External fault 3 (Available for 1.6.x.1 = 1 to 13)

28 = External fault 4 (Available for 1.6.x.1 = 1 to 13)

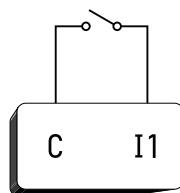
29 = External fault 5 (Available for 1.6.x.1 = 1 to 13)

30 = External fault 6 (Available for 1.6.x.1 = 1 to 13)

31 = External fault 7 (Available for 1.6.x.1 = 1 to 13)

32 = External fault 8 (Available for 1.6.x.1 = 1 to 13)

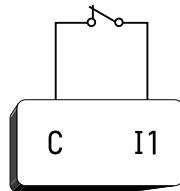
33 = External fault 9 (Available for 1.6.x.1 = 1 to 13)


34 = External fault 10 (Available for 1.6.x.1 = 1 to 13)

19. PARAMETER TABLE

1.6.×.3 Contact type NO-NC:

Actuation status at the input. NO is actuated via a normally open contact and NC is actuated via a normally closed contact.


NO

24Vac/dc

HC H1

NC

24Vac/dc

HC H1

1.6.×.4 Address of the digital input:

Links the address of the physical digital input with input x.

0 = Not configured	5 = Base - I2
1 = Base - HI1	6 = Base - I3
2 = Base - HI2	7 = Base - I4
3 = Base - HI3	8 = Base - I5
4 = Base - I1	

Note: The inputs present in the expansion modules will be listed in menu 4 after their configuration.

1.7 Auxiliary features:

1.7.1 Pump Down:

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.1.×.1	Enables Pump Down	0 [no]	1 [yes]	0 [no]	-
1.7.1.×.2	Pump Down setpoint	-14,7 (-1,0)	850,0 (58,6)	25,0 (1,7)	Psi (Bar)
1.7.1.×.3	Maximum time for Pump Down	1	999	5	min
1.7.1.×.4	Digital output	0	-	0	-

1.7.1.×.1 Enables Pump Down:

Enables the Pump Down shutdown function.

1.7.1.×.2 Pump Down Setpoint:

Pressure value that indicates that the refrigerant has been completely collected and the compressors are shutdown.

1.7.1.×.3 Maximum time for Pump Down:

Maximum time allowed for refrigerant collection. After this time has elapsed, compressors are shutdown.

1.7.1.×.4 Digital output:

Address digital output

0 = Not configured	4 = Base - O4
1 = Base - O1	5 = Base - O5
2 = Base - O2	6 = Base - O6
3 = Base - O3	

Note: The outputs present in the expansion modules will be listed in menu 4 after their configuration.

19. PARAMETER TABLE

1.7.2.x Compressor protection thermostat:

The letter x represents compressors 1 to 6 for each suction line

Suction 1: x between 1 and 6.

Suction 2: x between 7 and 12.

Suction 3: x between 13 and 18.

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.2.x.1	Output control temperature	0 (32,0)	200,1 [off] (392,2)	200,1 [off] (392,2)	°C (F)
1.7.2.x.2	Compressor shutdown temperature	0 (32,0)	200,1 [off] (392,2)	200,1 [off] (392,2)	°C (F)
1.7.2.x.3	Hysteresis	0,1 (0,2)	10,0 (18,0)	5,0 (9)	°C (F)
1.7.2.x.4	Temperature sensor	0	-	0	-
1.7.2.x.5	Digital output	0	-	0	-

1.7.2.x.1 Output control temperature:

Control temperature value for actuating the cooling output.

1.7.2.x.2 Compressor shutdown temperature:

Temperature value for compressor shutdown and alarm indication.

1.7.2.x.3 Hysteresis:

It is the temperature range for controlling the fans linked with the digital outputs. This pressure value is related to the setpoint that defines the actuation points for each fan (actuation interval = setpoint + hysteresis).

1.7.2.x.4 Temperature sensor:

Address of the temperature sensor that measures the temperature of the compressor.

0 = Not configured	4 = Base - S4
1 = Base - S1	5 = Base - S5
2 = Base - S2	6 = Base - S6
3 = Base - S3	

Note: The sensors present in the expansion modules will be listed in menu 4 after their configuration.

1.7.2.x.5 Digital output:

Digital output address controlled by the protection thermostat.

0 = Not configured	4 = Base - O4
1 = Base - O1	5 = Base - O5
2 = Base - O2	6 = Base - O6
3 = Base - O3	

Note: The outputs present in the expansion modules will be listed in menu 4 after their configuration.

1.7.3.x Adiabatic Condensation:

The letter x represents discharges 1 to 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.3.x.1	Control mode	0	3	0	-
1.7.3.x.2	Temperature for actuation	-50,1 (-58,2)	200,1 [off] (392,2)	-50,1 (-52,2)	°C (F)
1.7.3.x.3	Temperature for shutdown	-50,1 (-58,2)	200,1 (392,2)	-50,1 (-52,2)	°C (F)
1.7.3.x.4	Differential for actuation	0 (0)	25,1 (45,2)	0 (0)	°C (F)
1.7.3.x.5	Differential for shutdown	0 (0)	25,1 (45,2)	25,1 (45,2)	°C (F)
1.7.3.x.6	Minimum operating temperature (TBS)	-50,0 (-58,0)	200,0 (392,0)	18,0 (64,4)	°C (F)
1.7.3.x.7	Differential validation time	1	999	30	min
1.7.3.x.8	Time for next attempt	1	999	30	min
1.7.3.x.9	Wet bulb temperature sensor (TBU)	0	-	0	-
1.7.3.x.10	Digital output	0	-	0	-
1.7.3.x.11	Time on	1	999	5	min
1.7.3.x.12	Time off	1	999	5	min
1.7.3.x.13	Start time	0	1440 [off]	1440 [off]	hours: min
1.7.3.x.14	End time	0	1440 [off]	1440 [off]	hours: min

1.7.3.x.1 Control mode:

Configures the operation mode according to:

0 = Off	2 = Cycle timer
1 = By temperature	3 = Temperature with cycle timer

19. PARAMETER TABLE

1.7.3.x.2 Temperature for actuation:

Temperature of the dry bulb sensor to actuate the output.

1.7.3.x.3 Temperature for shutdown:

Temperature of the external temperature sensor (TBS) for shutting down the output.

1.7.3.x.4 Differential for actuation:

Value of the difference between dry and wet bulb temperatures for actuating the output.

1.7.3.x.5 Differential for shutdown:

Value of the difference between dry and wet bulb temperatures for shutting down the output.

1.7.3.x.6 Minimum operating temperature (TBS):

Minimum ambient temperature for adiabatic condensation operation for differential control.

Sensor options:
0 = Not configured
1 = Base - S1
2 = Base - S2
3 = Base - S3
4 = Base - S4
5 = Base - S5
6 = Base - S6

1.7.3.x.7 Differential validation time:

Maximum time to reach the shutdown differential (1.7.3.x.4).

1.7.3.x.8 Time for next attempt:

Time that the control waits before actuating the output for a new attempt to reach the shutdown differential

1.7.3.x.9 Wetbulb temperature sensor (TBS):

Specifies the wet bulb temperature sensor.

1.7.3.x.10 Digital output:

Digital output address

Sensor addresses:
0 = Not configured
1 = Base - O1
2 = Base - O2
3 = Base - O3
4 = Base - O4
5 = Base - O5
6 = Base - O6

Note: The sensors present in the expansion modules will be listed in menu 4 after their configuration.

1.7.3.x.11 Time on:

Time length the output remains on in Cycle Timer Mode and Temperature with cycle timer.

1.7.3.x.12 Time off:

Time length the output remains off in Cycle Timer Mode and Temperature with cycle timer.

1.7.3.x.14 Starttime:

Logic operating start time.

Note: If parameters 1.7.3.x.13 and 1.7.3.x.14 are set to OFF, the adiabatic condensation will remain active.

1.7.3.x.15 Endtime:

Logic operating end time.

1.7.4.1 Floating condensation:

The letter x represents discharges 1 to 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.4.x.1	Fluctuation start temperature	-50,1 [off] (-58,2)	200,0 (392,2)	-50,1 [off] (-58,2)	°C (F)
1.7.4.x.2	Minimum safety setpoint	-14,7 (-1,0)	850,0 (58,6)	250,0 (17,2)	Psi (Bar)
1.7.4.x.3	Safety subcooling	0 (0)	200,0 (360,0)	1,0 (1,8)	°C (F)
1.7.4.x.4	Start time	0	00:00 [off]	24:00 [off]	min
1.7.4.x.5	End time	0	00:00 [off]	24:00 [off]	min

1.7.4.x.1 Fluctuation start temperature:

Temperature value for starting control of the discharge setpoint. Floating condensation operates below this value.

1.7.4.x.2 Minimum safety setpoint:

Minimum value of the pressure setpoint for the discharge.

19. PARAMETER TABLE

1.7.4.x.3 Safety sub-cooling:

Minimum subcooling value. At this point, the setpoint reduction is stopped.

1.7.4.x.4 Start time:

Logic operating start time.

1.7.4.x.5 End time:

Logic operating end time.

Attention: If a dry bulb temperature sensor has been configured for adiabatic condensation, it is not necessary to configure this parameter.

1.7.5.1 Individual pressure switches:

The letter x represents individual pressure switches 1 to 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.5.x.1	Operation Mode	0	2	0	-
1.7.5.x.2	Pressure setpoint 1	0	850,0 (58,6)	10,0 (0,7)	Psi (Bar)
1.7.5.x.3	Pressure setpoint 2	0	850,0 (58,6)	20,0 (1,4)	Psi (Bar)
1.7.5.x.4	Pressure setpoint 3	0	850,0 (58,6)	30,0 (2,1)	Psi (Bar)
1.7.5.x.5	Pressure setpoint 4	0	850,0 (58,6)	40,0 (2,8)	Psi (Bar)
1.7.5.x.6	Pressure setpoint 5	0	850,0 (58,6)	50,0 (3,4)	Psi (Bar)
1.7.5.x.7	Pressure setpoint 6	0	850,0 (58,6)	60,0 (4,1)	Psi (Bar)
1.7.5.x.8	Pressure hysteresis 1	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.9	Pressure hysteresis 2	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.10	Pressure hysteresis 3	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.11	Pressure hysteresis 4	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.12	Pressure hysteresis 5	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.13	Pressure hysteresis 6	0	425,0 (29,3)	10,0 (0,7)	Psi (Bar)
1.7.5.x.14	Pressure sensor	0	-	0	-
1.7.5.x.15	Digital output address 1	0	-	0	-
1.7.5.x.16	Digital output address 2	0	-	0	-
1.7.5.x.17	Digital output address 3	0	-	0	-
1.7.5.x.18	Digital output address 4	0	-	0	-
1.7.5.x.19	Digital output address 5	0	-	0	-
1.7.5.x.20	Digital output address 6	0	-	0	-
1.7.5.x.21	Low pressure alarm	-14,8 [off] (-1,1)	850,0 (58,6)	-14,8 [off] (-1,1)	Psi (Bar)
1.7.5.x.22	High pressure alarm	0	850,1 [off] (58,7)	850,1 [off] (58,7)	Psi (Bar)
1.7.5.x.23	Hysteresis of alarms	1 (0,1)	20 (13,8)	1 (0,1)	Psi (Bar)
1.7.5.x.24	Minimum time between actuations	1 [off]	9999	5	sec
1.7.5.x.25	Minimum output on time	1 [off]	9999	5	sec

1.7.5.x.1 Operation mode:

Configures the Operation Mode.

0-Off

1-Compression

2-Descompression

1.7.5.x.2 to 1.7.5.x.7 Pressure setpoint 01-06:

Output pressure setpoint 01-06

1.7.5.x.8 to 1.7.5.x.13 Pressure hysteresis 01-06:

Hysteresis of output 01-06

1.7.5.x.14 Pressure sensor:

Specifies the pressure sensor.

Sensor options:

0 = Not configured	4 = Base - S4
1 = Base - S1	5 = Base - S5
2 = Base - S2	6 = Base - S6
3 = Base - S3	

Note: The sensors present in the expansion modules will be listed in menu 4 after their configuration.

19. PARAMETER TABLE

1.7.5.x.15 to 1.7.5.x.20 Address of digital output 01-06:

Digital output address 01-06 linked to the individual pressure switch.

1.7.5.x.21 Low pressure alarm:

Enables the alarm indication when the pressure is lower than the configured value.

1.7.5.x.22 High pressure alarm:

Enables the alarm indication when the pressure is higher than the configured value.

1.7.5.x.23 Alarm hysteresis:

Hysteresis of pressure alarms.

1.7.5.x.24 Minimum time between activations:

The function applies to the main control outputs of the individual pressure switches and is the minimum time between two actuations of the main digital outputs. This time guarantees that simultaneous activation of the digital outputs will not occur, avoiding surges in the supply network and excessive fluctuations in the control variable.

1.7.5.x.25 Minimum output time on:

Minimum output time on/off.

1.7.6 Individual thermostat:

The letter x represents individual thermostats 1 to 3.

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.6.x.1	Operation mode	0	2	0	-
1.7.6.x.2	Temperature setpoint	-50,0 (-58,0)	200,0 (39,2)	20,0 (68,0)	°C (°F)
1.7.6.x.3	Temperature hysteresis	1,0 (1,8)	5,0 (9,0)	5,0 (9,0)	°C (°F)
1.7.6.x.4	Low temperature alarm	-50,1 (-58,2)	200,0 (392,0)	-50,1 (-58,2)	°C (°F)
1.7.6.x.5	High temperature alarm	-50,0 (-58,0)	200,1 (392,2)	200,1 (392,2)	°C (°F)
1.7.6.x.6	Hysteresis of alarms	1,0 (1,8)	5,0 (9,0)	5,0 (9,0)	°C (°F)
1.7.6.x.7	Linked pressure switch	0	3		-
1.7.6.x.8	Temperature sensor	0	*		-
1.7.6.x.9	Main output	0	*		-
1.7.6.x.10	Contact type: NO-NC (main)	0	1	0	-
1.7.6.x.11	Minimum time output on / off	1	9999		sec
1.7.6.x.12	Defrost output	0	*		-
1.7.6.x.13	Contact type: NO-NC (defrost)	0	1	0	-
1.7.6.x.14	Interval between defrosts	0	9999	240	Min
1.7.6.x.15	Defrost length	0	9999	30	Min
1.7.6.x.16	Defrost time 1	0	00:00	24:00	Min
1.7.6.x.17	Defrost time 2	0	00:00	24:00	Min
1.7.6.x.18	Defrost time 3	0	00:00	24:00	Min
1.7.6.x.19	Defrost time 4	0	00:00	24:00	Min
1.7.6.x.20	Defrost time 5	0	00:00	24:00	Min
1.7.6.x.21	Defrost time 6	0	00:00	24:00	Min

1.7.6.x.1 Operation mode:

Configures the Operation Mode.

- 0 = Off
- 1 = Heating
- 2 = Cooling

1.7.6.x.2 Temperature setpoint:

Output temperature setpoint

1.7.6.x.3 Temperature hysteresis:

Temperature control hysteresis linked to individual thermostat output.

1.7.6.x.4 Low pressure alarm:

Enables the alarm indication when the pressure is lower than the configured value.

1.7.6.x.5 High pressure alarm:

Enables the alarm indication when the pressure is higher than the configured value.

19. PARAMETER TABLE

1.7.6.x.6 Alarm hysteresis:

Hysteresis of temperature alarms.

1.7.6.x.7 Linked pressure switch:

Allows you to link the thermostat to a suction pressure switch.

0 = Suction 1

1 = Suction 2

2 = Suction 3

1.7.6.x.8 Temperature sensor:

Specifies the temperature sensor.

1.7.6.x.9 Main output address:

Output address linked to the individual thermostat.

1.7.6.x.10 NO-NC contact type:

Defines the actuation state of the main output

0 = NO: When the output is actuated, the contact is closed.

1 = NC: When the output is actuated, the contact is open.

1.7.6.x.11 Minimum time output on:

Minimum time output on/off.

1.7.6.x.12 Defrost output address:

Output address linked to the individual thermostat to defrost.

1.7.6.x.13 Contact type NO-NC (defrost):

Defines the operating state of the defrost output.

0 = NO: When the output is actuated, the contact is closed.

1 = NC: When the output is actuated, the contact is open.

1.7.6.x.14 Interval between defrosts:

Time interval between the defrosts.

1.7.6.x.15 Defrost length:

Time interval during which the thermostat remains in defrost.

1.7.6.x.16 to 1.7.6.x.21 Defrost time:

It allows configuring a specific time to defrost. In this case, the defrost interval parameter will not be considered.

1.7.7 Rotation outputs:

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.7.x.1	Rotation outputs time	0	9999	720	min.
1.7.7.x.2	Transition time	0	9999	5	sec.
1.7.7.x.3	Digital output 1 address	0	-	0	-
1.7.7.x.4	Digital output 2 address	0	-	0	-

1.7.7.x.1 Rotation outputs time:

Operation time of an output before entering rotation.

1.7.7.x.2 Transition time:

Time that the two outputs remain on during rotation.

1.7.7.x.3 Digital output 1 address:

Digital output address for rotation

1.7.7.x.4 Digital output 2 address:

Digital output address for rotation.

19. PARAMETER TABLE

1.7.8 Control status output:

Feature	Description	Minimum	Maximum	Standard	Unit
1.7.8.1	Digital output address	0	-	0	-

1.7.8.1 Digital output address:

Digital output that indicates that the controller is operating.

1.8 Maintenance time:

Time setting for maintenance of compressors and fans.

1.8.x Suction/Discharge:

The letter x represents suctions (x between 1 and 3) and discharges (x between 4 and 6).

Feature	Description	Minimum	Maximum	Standard	Unit
1.8.x.1	Maintenance time for compressor / fan 01	0 [off]	9999	0 [off]	h
1.8.x.2	Maintenance time for compressor / fan 02	0 [off]	9999	0 [off]	h
1.8.x.3	Maintenance time for compressor / fan 03	0 [off]	9999	0 [off]	h
1.8.x.4	Maintenance time for compressor / fan 04	0 [off]	9999	0 [off]	h
1.8.x.5	Maintenance time for compressor / fan 05	0 [off]	9999	0 [off]	h
1.8.x.6	Maintenance time for compressor / fan 06	0 [off]	9999	0 [off]	h

1.8.x.1 Time for compressor/fan maintenance 1 to 6:

Time for the alarm of hours worked of the compressor or fan.

1.9 Sensors:

Settings related to sensors.

1.9.x Sensors S1-S6:

The letter x represents the sensor inputs S1 to S6.

Feature	Description	Minimum	Maximum	Standard	Unit
1.9.x.1	Pressure at 4mA	0	850,0 (58,6)	0	Psi (Bar)
1.9.x.2	Pressure at 20mA	0	850,0 (58,6)	500,0 (34,5)	Psi (Bar)
1.9.x.3	Pressure offset	-50,0 (-3,4)	50,0 (-3,4)	0	Psi (Bar)
1.9.x.4	Temperature offset	-50,0 (-90,0)	50,0 (90,0)	0 (0)	°C (°F)

1.9.x.1 Pressure at 4mA:

Sensor pressure value at 4mA (low full scale).

1.9.x.2 Pressure at 20mA:

Sensor pressure value at 20mA (high full scale).

1.9.x.3 Pressure offset:

It allows to offset deviations in the pressure reading.

1.9.x.4 Temperature offset:

It allows to offset deviations in the temperature reading.

1.10 Analog outputs:

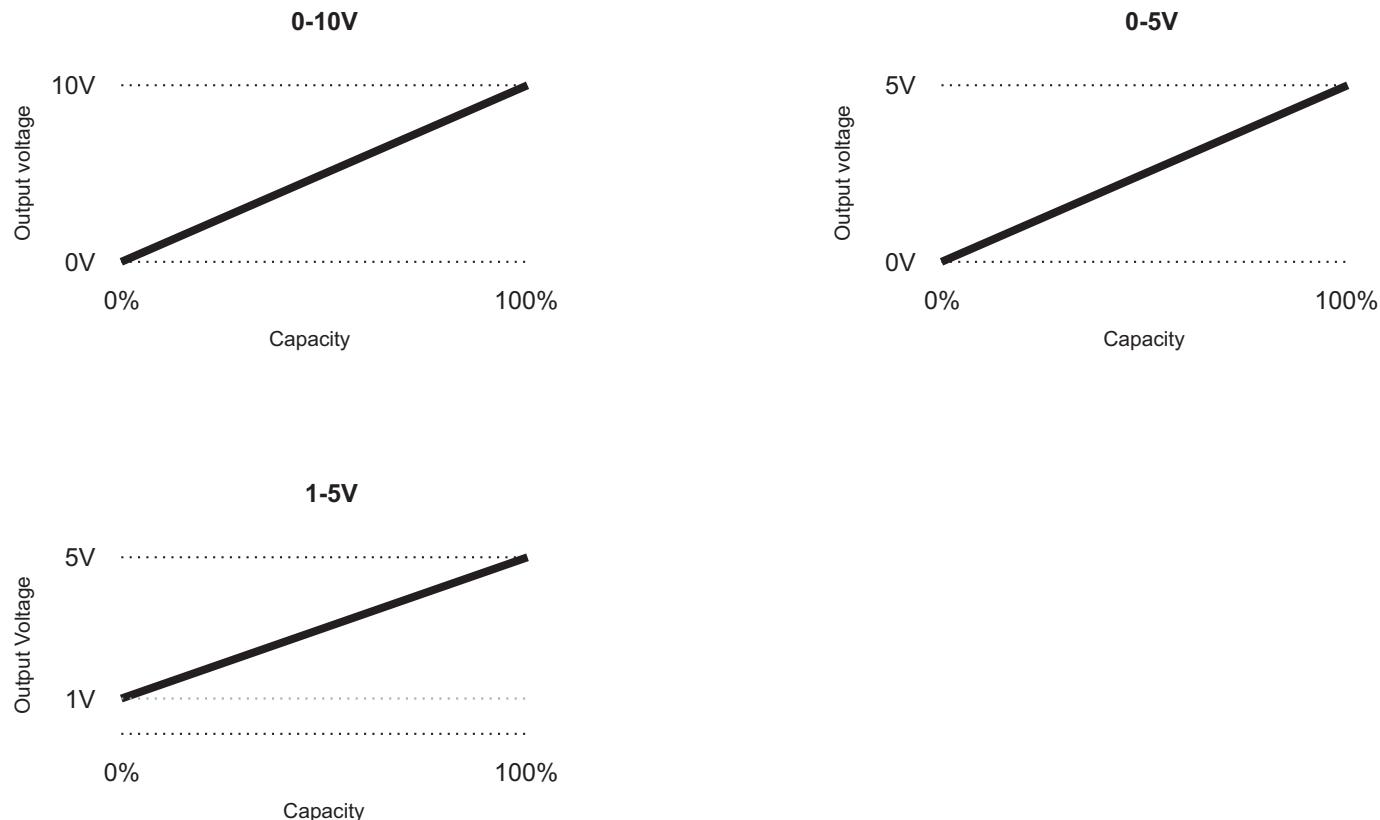
Configuration of limit values for analog outputs.

1.10.x Analog outputs A1-A2:

The letter x represents the analog outputs A1 and A2.

Feature	Description	Minimum	Maximum	Standard	Unit
1.10.x.1	Analog output actuation range	0	2	0	-
1.10.x.2	Minimum analog output value	0	100	0	%
1.10.x.3	Analog output starting value	0	100	100	%
1.10.x.2	Maximum analog output value	0	100	0	%

19.PARAMETER TABLE


1.10.x.1 Operating range of the analog output:

Defines the operating range of the output voltage. The minimum voltage value corresponds to 0% and the maximum value corresponds to 100% capacity of the linked compressor or fan.

0=0-10V

1=0-5V

2=1-5V

1.10.x.2 Minimum value of the analog output:

It is the minimum value that the analog output will take when it is actuated. This value is used to limit the minimum rotation speed of the compressor or fan.

1.10.x.3 Starting value of the analog output:

It is the value of the analog output during the start time.

1.10.x.4 Maximum value of the analog output

It is the maximum value that the analog output will take when it is actuated. This value is used to limit the maximum rotation speed of the compressor or fan.

1.11 Refrigerant curves:-Point 1 to point 20:

It allows to adjust a customized saturated refrigerant curve. If you want to use a refrigerant that is not included in the list, you can enter the saturation, pressure, and temperature values. The pressure and temperature values must be entered in ascending order from 1 to 20, that is, values from point 2 must be greater than the values of point 1. A minimum of 10 points must be configured for control. (Point 1 to point 10).

The letter "x" represents points 1 to 20.

Feature	Description	Minimum	Maximum	Standard	Unit
1.11.x.1	Point x - Pressure of the mapped curve	-14,8 [off] (-1,1)	850,0 (58,6)	-14,8 [off] (-1,1)	Psi (Bar)
1.11.x.2	Point x - Temperature of the mapped curve	-50,1 (-58,2)	200,0 (392,0)	-50,1 (-58,2)	°C (°F)

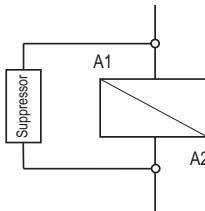
1.11.x.1 Point x - Pressure of the mapped curve:

Point pressure value.

1.11.x.2 Refrigerant saturation temperature value:

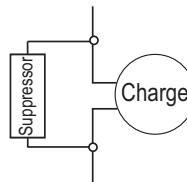
Point temperature value.

20. IMPORTANT


According to NBR 5410 standard chapters:

1: Install surge protectors in the supply

2: Sensor and serial communication cables can be assembled, but not in the same conduit through which power supply and charge actuation pass


3: Install transient suppressors (RC filter) in parallel to the charges, to increase the life span of relays.

Wiring schematics for suppressors in contactors

A1 and A2 are the contactor coil terminals

Wiring schematics for suppressors on charges with direct actuation

For light direct delivery
maximum current
Specified.

[Full Gauge Controls makes suppressors available for sale](#)

21. WARRANTY

INFORMAÇÕES AMBIENTAIS

Packing:

The materials used in the packaging of Full Gauge products are 100% recyclable. Try to dispose of it through specialized recycling agents.

Product:

The components used in Full Gauge controllers can be recycled and reused if disassembled by specialized companies.

Disposal:

Do not burn or dispose of controllers that reach the end of their life span in household trash. Observe the existing effective legislation in your region regarding the disposal of electronic waste. In case of any doubts, contact Full Gauge Controls.

WARRANTY TERM - FULL GAUGE CONTROLS

The products manufactured by Full Gauge Controls, from May 2005, have a warranty period of 02 (two) years directly with the factory and 01 (one) year with accredited resellers/dealers, from the date of the consigned sale on the invoice. After this year with resellers, the warranty will continue to be effective if the instrument is sent directly to Full Gauge Controls. This period is valid for the Brazilian market. Other countries have a 2 (two) year warranty. The products are guaranteed in case of manufacturing failure that makes them improper or unsuitable for the applications for which they are intended. The warranty is limited to the maintenance of instruments manufactured by Full Gauge Controls, disregarding other types of expenses, such as indemnification due to damages caused to other equipment.

EXCEPTIONS TO WARRANTY

The Warranty does not cover transport and / or insurance costs for sending products with indications of defect or malfunction to Technical Assistance. The following events are also not covered: natural wear of parts, external damage caused by falls or improper packaging of products.

LOSS OF WARRANTY

The product will automatically lose its warranty if:

- The instructions for use and assembly in the technical description and the installation procedures present in Standard NBR5410 are not observed;
- It is subjected to conditions beyond the limits specified in its technical description;
- It is violated or repaired by a person who is not part of Full Gauge's technical team;
- The damage is caused by a fall, blow and / or impact, water infiltration, overload and / or atmospheric discharge.

WARRANTY USE

To be covered and benefit from the guarantee, the customer must send the product properly packed, together with the corresponding purchase invoice, to Full Gauge Controls. Shipping costs for products are at customer's costs. It is also necessary to send as much information as possible regarding the detected defect, thus making it possible to streamline the analysis, testing and service.

These processes and eventual product maintenance will only be carried out by Full Gauge Controls' Technical Assistance, at the Company's headquarters- Rua Júlio de Castilhos, 250, CEP 92120-030 - Canoas - Rio Grande do Sul - Brazil.